
Qualifying Exam
Spring 2015
March 30, 2015 Number

You may use calculators for this exam. Be advised, however, that every question can be answered

without the use of a calculator and more than likely can be answered more efficiently without the

use of a calculator. — Justify all your answers. Answer specific questions by giving the exact values,

not approximations.

Problem 1. Consider the function

f(x) = ln

(

1√
2− e−2x

)

.

Determine the exact domain and range of this function. Prove that this function is an involution. Recall that a
function f : A → A is an involution if f is a bijection and f−1 = f .

Solution. This function is defined whenever e−2x < 2, and this is the case whenver x > (− ln 2)/2. Thus, the
domain of this function is the set

{

x ∈ R : x > (− ln 2)/2
}

= ((− ln 2)/2,+∞). To determine the range, start

with the range of x 7→
√
2− e−2x. The range of this function is [0,

√
2). Thus, the range of x 7→ ln

√
2− e−2x is

(−∞, ln
√
2). Hence, the range of the given function, x 7→ − ln

√
2− e−2x is (− ln

√
2,+∞), identical to its domain.

The given function is a composition of bijections, so it is a bijection. To prove that f is an involution, notice that
it can be written as f(x) = (−1/2) ln

(

2− e−2x
)

. With this expression, for x > (ln 2)/2 we calculate

f(f(x)) = −1

2
ln
(

2− eln(2−e−2x)
)

= −1

2
ln
(

2− (2− e−2x)
)

= −1

2
ln
(

e−2x
)

= −1

2
(−2x) = x.

Since at each step in the above simplification the expressions involved are defined, the simplification proves that
f is an involution.

Problem 2. The figure on the right shows the
functions

y = e−x2

and y = −e−x2

and the circle centered at the origin that touches
both graphs. Find the exact value of the radius
of this circle.

The phrase “circle touches a graph” means that
the circle and the graph have a common point at
which they have a common tangent line.
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Solution. We seek the point
(

x0, e
−x2

0

)

at which the normal to the graph y = e−x2

goes through the origin. The

equation of a normal at this point is y = (x − x0)
(

ex
2

0

)

/(2x0) + e−x2

0 . To find that normal that goes through the

origin we solve −x0
(

ex
2

0

)

/(2x0)+ e−x2

0 = 0 for x0, yielding x0 = −
√

(ln 2)/2 and x0 =
√

(ln 2)/2. Now, calculating

the distance of the corresponding point on the graph to the origin gives us the radius:
√

(1 + ln 2)/2 ≈ 0.920094.
This result is consistent with what we see in the provided picture.

Problem 3. Find all positive reals a for which the solution of the initial value problem

y′ =
1

(1 + t2) y
, y(0) = a

is defined for all t ∈ R.

Solution. This is a separable differential equation. After separating variables we get yy′ = (1 + t2)−1. The left
hand side is the derivative of y2/2. Therefore, y2/2 = C + arctan t. Now we can solve the initial value problem:
a2/2 = C. Thus, the solution of the initial value problem is y2 = a2+2arctan t. Since the left hand side in the last
equality is always nonnegative, for the last equation to be consistent for all t ∈ R we must have a2+2arctan t ≥ 0
for all t ∈ R. Since limt→−∞ 2 arctan t = −π, we must have a2 − π ≥ 0. Thus, the solution of the give initial
problem is defined for all t ∈ R if and only if a ≥ √

π. If this condition is satisfied, the solution is given as
y(t) =

√
a2 + 2arctan t, t ∈ R.
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Problem 4. Consider the matrix M =













0 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0













.

(a) Write a basis for the column space and a basis for the null-space of M .

(b) Calculate all eigenvalues of M .

(c) Is M diagonalizable?

Solution. (a) Clearly the rank of M is 2. The first two columns of M form a basis for the column space of M . By
the rank-nullity theorem the null-space of M is three dimensional. One can guess (or do a row reduction) a basis
for the null space: [0, 1,−1, 0, 0]⊤ , [0, 1, 0,−1, 0]⊤ , [0, 1, 0, 0,−1]⊤ .
(b) Denote the first column of M by u and the second one by v. Then, Mu = 4v and Mv = u. Therefore, the
matrix representation of the restriction of M onto the column space with respect to the basis

{

u,v
}

is the matrix

B =

[

0 1
4 0

]

.

This matrix has eigenvalues 2 and −2 with a corresponding eigenvectors [1 2]⊤ and [1 − 2]⊤. Thus, M has
eigenvalues 2 and −2 and the corresponding eigenvectors are [2, 1, 1, 1, 1]⊤ and [−2, 1, 1, 1, 1]⊤ . In conclusion, M
has three eigenvalues, −2, 0, 2. The eigenspaces of −2 and 2 are one-dimensional, while the eigenspace of 0 is three
dimensional.
(c) Since B is invertible none of the nonzero vectors from the null-space of M belongs to the column space.
Therefore, the five eigenvectors just found are linearly independent. Thus M is diagonalizable. In fact, setting

P =













−2 2 0 0 0
1 1 1 1 1
1 1 −1 0 0
1 1 0 −1 0
1 1 0 0 −1













and D =













−2 0 0 0 0
0 2 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













we have MP = PD which is equivalent to P−1MP = D.

Problem 5. Let A =

[

5/2 −1

3 −1

]

and x0 =

[

1

1

]

. Calculate lim
k→∞

Akx0.

Solution. A simple calculation shows that the eigenvalues of A are 1 with a corresponding eigenvector [2 3]⊤ and
1/2 with a corresponding eigenvector [1 2]⊤. Next we represent the given vector x0 as the linear combination of
eigenvectors: [1 1]⊤ = [2 3]⊤−[1 2]⊤. Thus, Akx0 = [2 3]⊤−(1/2)k [1 2]⊤. Therefore, limk→∞Akx0 = [2 3]⊤.

Problem 6. Let {an} be a sequence of positive real numbers.

(a) Prove or disprove: If
∑

∞

n=1 an converges, then
∑

∞

n=1
√
anan+1 converges.

(b) Prove or disprove: If
∑

∞

n=1
√
anan+1 converges, then

∑

∞

n=1 an converges.

(c) In addition assume that {an} is nonincreasing. With this additional assumption, prove or disprove the above
implications.

Hint: The inequality of arithmetic and geometric means can be very useful here. Write this inequality down
before proceeding.

Solution. As hinted, let us state the inequality of arithmetic and geometric means. If x and y are nonnegative
real numbers, then,

√
xy ≤ (x+ y)/2.
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(a) is true. Assume that
∑

∞

n=1 an converges. Then
∑

∞

n=1 an+1 converges and also
∑

∞

n=1(an+an+1)/2 converges. By
AM-GM inequality for every n ∈ N we have

√
anan+1 ≤ (an+an+1)/2. Now by the comparison test

∑

∞

n=1
√
anan+1

converges.
(b) is false. An example showing this is as follows. Let a2k = 1/k and a2k+1 = 1/(k3). Then

√
a2ka2k+1 = 1/(k2)

and
√
a2k+1a2k+2 = 1/

√

k3(k + 1) < 1/(k2). Thus
∑√

anan+1 converges by the comparison test and
∑

an
diverges.
(c) With this additional assumption, (b) is true. The additional assumption implies that an+1 ≤ √

anan+1, so
by the comparison test

∑

an+1 converges whenever
∑√

anan+1 converges. Since
∑

an+1 converges if and only if
∑

an converges, (b) is proved.

Problem 7. Find the volume of the solid given by

W =
{

(x, y, z) ∈ R
3 : x2 + z2 ≤ 1, y2 + z2 ≤ 1

}

by slicing the solid by planes parallel to the xy-plane. See Figure 1.

Solution. A horizontal plane at level z, −1 ≤ z ≤ 1 intersects two
cylinders at a square with sides 2

√
1− z2. Thus the volume that we

are interested in is given by the integral

4

∫ 1

−1
(1− z2)dz =

16

3
.

Remark. This is well known example of finding volumes by slicing.
This problem is in many calculus books. The animation tittled: “a
cross-section is a square” posted on Wednesday, February 25, 2009
at this website is relevant to this problem.

Figure 1: Two cylinders

Problem 8. Figure 3 shows a right circular cone and a sphere completely contained in the cone. Find the radius
of the base and the height of the right circular cone with the smallest surface area which completely contains the
unit sphere. The mesh that you see in the picture is not part of the surface area of the cone; it is there just to
indicate that the sphere is completely contained in the cone.

O

A B

C

r
Figure 2: Triangle ABC Figure 3: Sphere in a cone

http://faculty.wwu.edu/curgus/Courses/125/125.html
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Solution. First we have to determine which isosceles triangles contain the unit circle. Figure 2 shows an isosceles
triangle with its inscribed circle. We assume that the radius of the inscribed circle is 1. Denote by r the lenght of
the line segment AB. Denote the length of AC by h and the length of BC by s. Notice that h is the height of the
cone and s is a directrix of the cone. We need to calculate h and s in terms of r. Further notice that 1/r is the
tangent of the angle ∡ABO. We use the double-angle formula tan(2α) = 2(tanα)/(1− (tan α)2) and the fact that
the angle ∡ABC is twice ∡ABO to calculate the tangent of ∡ABC to be (2/r)/(1 − 1/r2) = 2r/(r2 − 1). Since
the tangent of ∡ABC is h/r, we get that h = 2r2/(r2 − 1). From the Pythagorean theorem we get

s =

√

r2 +
4r4

(r2 − 1)2
=

r(r2 + 1)

r2 − 1

The surface area of the cone with the directrix s and radius of the base r is given by srπ. Thus we need to
minimize

sr =
r2(r2 + 1)

r2 − 1
, r > 1.

The derivative with respect to r of the above function is

2r

(r2 − 1)2
(

r4 − 2r2 − 1
)

.

Since 2r/((r2 − 1)2) > 0 for r > 1 and

r4 − 2r2 − 1 =
(

r2 − 1 +
√
2
)(

r2 − 1−
√
2
)

we conclude that the minimum area occurs at r =
√

1 +
√
2. The corresponding h = 2+

√
2 and s =

√

7 + 5
√
2.

Figure 4: A cone with a red directrix and
dark blue circumference of the base

Figure 5: The surface area of a cone

Remark. You are not expected to know the formula for the surface area of the cone. However, you are expected
to be able to deduce this formula. When unwrapped the surface area of a cone is a circular sector, see Figures 4
and 5. This circular sector is cut out of a circle whose radius is s, where s is the length of a directrix of the cone
shown in red in above figures. The length of the circular arc bounding this circular sector is 2rπ, where r is the
radius of the base of the cone. This arc is shown in dark blue. You are expected to know the relationship
between θ in Figure 5 and the lengths s and 2rπ (that is the relationship between the radius, the arc length and
θ: θ*(red radius) = arc length): θs = 2rπ. This determines θ = 2rπ/s. You are expected to know how to
calculate the area of a circular sector when the radius and θ are known (area = (radius)2*θ/2). Since in our case
the radius is s, θ = 2rπ/s, we conclude that the area of the circular sector which represents the surface area of
the cone is srπ.
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Problem 9. Recall that [0, 1]3 denotes the unit cube in R
3, see

Figure 6. That is the set

[0, 1]3 =
{

(x, y, z) ∈ R
3 : x, y, z ∈ [0, 1]

}

.

Consider the function

f(x, y, z)=−
(

x lnx+ y ln y + z ln z
)

, (x, y, z) ∈ [0, 1]3.

Notice that limt→0+ t ln t = 0. Therefore the function f is defined on
all the sides of the unit cube.

(a) Determine the global maximum and the global minimum of the
function f on the unit cube.

(b) Determine the global maximum and the global minimum of the
function f on the intersection of the unit cube and the plane
x+ y + z = 1.

Figure 6: The unit cube

Solution. (a) We first explore the interior of the unit cube. We look at the points where the gradient of f equals
the zero vector. That is where, − lnx− 1 = 0, − ln y − 1 = 0, and − ln z + 1 = 0. Thus, the point (1/e, 1/e, 1/e)
is the only critical point of f and it is in the unit cube. The value of f at this point is 3/e. Next we explore
the sides of the unit cube. The identities f(x, y, 0) = f(x, y, 1), f(x, y, z) = f(y, z, x) = f(z, x, y) = f(z, y, x) =
f(y, x, z) = f(x, z, y) imply that it is enough to consider one side of the cube. We consider the unit square in
xy-plane, f(x, y, 0) = −

(

x lnx+ y ln y
)

. The maximum in the interior of this square is at (1/e, 1/e, 0) and equals
2/e. The maximum at the edges is 1/e. The minimum is clearly 0 attained at each of the vertices. Hence the
global maximum is 3/e attained at (1/e, 1/e, 1/e) and the global minimum is 0 attained at any of the vertices.
(b) For an extreme value in the interior of the triangle, we are looking for the point in the triangle where the
gradient is parallel to the normal vector i + j + k of the plane. This leads to the equalities −1 − lnx = λ,
−1 − ln y = λ, −1 − ln z = λ, which imply that x = y = z. Together with x + y + z = 1 we obtain that the
local extreme in the interior of the triangle is at the point (1/3, 1/3, 1/3) with the value of f being ln 3. Again,
because of the symmetry it is enough to consider one edge: f(x, 1 − x, 0) = −x lnx − (1 − x) ln(1 − x). This is
a continuous nonngative function on [0, 1] which is “even” around the line x = 1/2. Thus its maximum is ln 2
attained at x = 1/2. In conclusion, the global maximum is ln 3 attained at (1/3, 1/3, 1/3) and the global minimum
is 0 attained at the vertices.
Notice that the global maximum 3/e ≈ 1.10364 and the constrained maximum ln 3 ≈ 1.09861 are very close.
This solution is a very round about proof that 3 > e ln 3. A more direct proof would be to consider the function
t 7→ t− e ln t, t > 0, and prove that this function is nonnegative with the global minimum only at t = e.
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Problem 10. Let r > 0. Let Wr be the part of the unit sphere centered at the origin which is cut out by the
cone z = r

√

x2 + y2. That is

Wr = {(x, y, z) : x2 + y2 + z2 ≤ 1, r
√

x2 + y2 ≤ z}.

Calculate r for which the volume of Wr equals one third of the volume of the unit sphere. See Figure 7 below.

Figure 7: Two views of the region Wr

Solution. The volume of the regin Wr in spherical coordinates is given by

∫ 2π

0

∫ 1

0

∫ arctan(1/r)

0
ρ2 sinφ dφdρ dθ =

2π

3

(

1− cos(arctan(1/r))
)

.

To get 1/3 of a sphere we solve for r

2π

3

(

1− cos(arctan(1/r))
)

=
1

3

4π

3
,

that is cos(arctan(1/r)) = 1
3 , which leads to

1

r
= tan

(

arccos(1/3)
)

=
(

sin(arccos(1/3))
)

/ cos(arccos(1/3)) =
(
√

1− 1/9
)

/(1/3) = 2
√
2,

that is r = 1/(2
√
2).


