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You may use calculators for this exam. Be advised however that every question can be

answered without the use of a calculator and more than likely can be answered more

efficiently without the use of a calculator.

Problem 1. For which value or values of a are the graphs of y = ax2 and y = lnx tangent? (This means
that the graphs have a common point and the same tangent line at that point.)

Solution. Assume that x0 > 0 is such that ax20 = lnx0 and that for the corresponding slopes we have
2ax0 = 1/x0. From the last equality, ax20 = 1/2, and substituting in the first 1/2 = lnx0. This gives
x0 =

√
e and a = 1/(2e). It is easy to check that the point

(√
e, 1/2

)

is on both graphs of y = lnx and
y = x2/(2e) and that the line y = x/

√
e− 1/2 is the tangent line to both graphs at that point.

Problem 2. Let a ∈ R. Consider the function ga(x) =
a− x

1− (1− a)x
.

(a) Show that ga is its own inverse.

(b) Prove that ga is decreasing on each open interval on which it is defined.

(c) Let a > 0. Prove that ga maps [0, a] onto itself as a bijection.

Solution. (a) Let x 6= 1/(1− a) and calculate

(ga ◦ ga)(x) =
a− a−x

1−(1−a)x

1− (1− a) a−x
1−(1−a)x

=
a
(

1− (1− a)x
)

− (a− x)
(

1− (1− a)x
)

− (1− a)(a− x)

=
−a(1− a)x+ x

1− (1− a)x− (1− a)a+ (1− a)x

=

(

1− a(1− a)
)

x

1− (1− a)a

= x.

Thus ga is its own inverse.

(b) Calculate the derivative

g′a(x) =
−
(

1− (1− a)x
)

+ (1− a)(a− x)
(

1− (1− a)x
)2 = − 1− a+ a2

(

1− (1− a)x
)2 = −

(

a− 1/2
)2

+ 3/4
(

1− (1− a)x
)2 < 0.

Since the derivative is negative on each open interval on which ga is defined (b) is proved.

(c) If a = 1, then g1(x) = 1 − x. First g1 is defined on R, so it is defined on [0, 1]. Since, g1(0) = 1,
g1(1) = 0, and g1 is decreasing on (0, 1) it maps [0, 1] onto [0, 1]. It is a bijection since g1 : [0, 1] → [0, 1] is
its inverse. If 0 < a < 1, we have 1/(1−a) > 1, so ga is defined on [0, a]. Since, ga(0) = a, ga(a) = 0, and
ga is decreasing on (0, a) it maps [0, a] onto [0, a]. It is a bijection since ga : [0, a] → [0, a] is its inverse. If
1 < a, we have 1/(1 − a) < 0, so ga is defined on [0, a]. Since, ga(0) = a, ga(a) = 0, and ga is decreasing
on (0, a) it maps [0, a] onto [0, a]. It is a bijection since ga : [0, a] → [0, a] is its inverse.



Problem 3. Find a 2× 2 matrix A with the following three properties: (a) A has real nonzero entries,
(b) A is symmetric, (c) the eigenvalues if A are 0 and 1.

Solution. For a matrix to have an eigenvalue 0 it is sufficient to have identical columns. For a matrix to
have eigenvalue 1 it is sufficient for the entries in each row to add up to 1. (Then [1 1]T is the eigenvector.)

Clearly the matrix

[

1/2 1/2

1/2 1/2

]

satisfies all the properties.

A more thorough solution is as follows. Let φ ∈ (−π, π]. Then the vectors [cosφ sinφ]T and [− sinφ cosφ]T

are mutually orthogonal unit vectors. In fact, each pair of mutually orthogonal unit vectors is in this
family. A matrix A from the problem is diagonalizable in the following way
[

cosφ − sinφ

sinφ cosφ

][

0 0

0 1

][

cosφ sinφ

− sinφ cosφ

]

=

[

0 − sinφ

0 cosφ

][

cosφ sinφ

− sinφ cosφ

]

=

[

(sinφ)2 −1
2 sin 2φ

−1
2 sin 2φ (cosφ)2

]

All matrices A required in the problem are given by the above formula. The choice φ = −π/4 yields the
matrix discovered at the beginning of the proof.

Problem 4. In this problem we will define two special functions.

sinc(x) =











sin(x)

x
if x 6= 0

1 if x = 0

and Si(x) =

∫ x

0
sinc(t) dt.

(a) Find the general term of the Maclaurin series of the function Si. The Maclaurin series is the Taylor
series about 0.

(b) Calculate lim
x→0

x− Si(x)

x3
.

Solution. It is well known that the Maclaurin series of the sine function is

sin(x) =

∞
∑

k=0

(−1)n

(2n+ 1)!
x2n+1 = x− 1

3!
x3 +

1

5!
x5 − 1

7!
x7 + · · ·

This series converges for all x ∈ R. Therefore

sinc(x) =

∞
∑

k=0

(−1)n

(2n + 1)!
x2n = 1− 1

3!
x2 +

1

5!
x4 − 1

7!
x6 + · · ·

This series also converges for all x ∈ R. Therefore it can be integrated term by term. Hence

Si(x) =
∞
∑

k=0

(−1)n

(2n + 1)(2n + 1)!
x2n+1 = x− 1

3 · 3!x
3 +

1

5 · 5!x
5 − 1

7 · 7!x
7 + · · ·

This series also converges for all x ∈ R. The last series can be used to find the Maclaurin series of the
function whose limit is asked in (b).

x− Si(x)

x3
=

∞
∑

k=1

(−1)n+1

(2n + 1)(2n + 1)!
x2n−2 =

1

3 · 3! −
1

5 · 5!x
2 +

1

7 · 7!x
4 − 1

9 · 9!x
6 + · · ·

This yields lim
x→0

x− Si(x)

x3
=

1

18
.
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Problem 5. Let n be a positive integer and let a, b, c, d be real
numbers. Consider the (2n+1)× (2n+1) matrix given on the
right and answer the following questions.

(a) Find a necessary and sufficient condition for the given ma-
trix to be invertible.

(b) Assume that the condition for invertibility is satisfied. Give
the formula for the inverse.

































a 0 · · · 0 0 0 · · · 0 b
0 a · · · 0 0 0 · · · b 0
...

...
. . .

...
...

... . .
. ...

...
0 0 · · · a 0 b · · · 0 0
0 0 · · · 0 1 0 · · · 0 0
0 0 · · · c 0 d · · · 0 0
...

... . .
. ...

...
...

. . .
...

...
0 c · · · 0 0 0 · · · d 0
c 0 · · · 0 0 0 · · · 0 d

































Solution. Denote by δn the determinant of the given matrix. Then calculate

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a 0 · · · 0 0 0 · · · 0 b
0 a · · · 0 0 0 · · · b 0
...

...
. . .

...
...

... . .
. ...

...
0 0 · · · a 0 b · · · 0 0
0 0 · · · 0 1 0 · · · 0 0
0 0 · · · c 0 d · · · 0 0
...

... . .
. ...

...
...

. . .
...

...
0 c · · · 0 0 0 · · · d 0
c 0 · · · 0 0 0 · · · 0 d

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= a

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a · · · 0 0 0 · · · b 0
...

. . .
...

...
... . .

. ...
...

0 · · · a 0 b · · · 0 0
0 · · · 0 1 0 · · · 0 0
0 · · · c 0 d · · · 0 0
... . .

. ...
...

...
. . .

...
...

c · · · 0 0 0 · · · d 0
0 · · · 0 0 0 · · · 0 d

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+ b

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 a · · · 0 0 0 · · · b
...

...
. . .

...
...

... . .
. ...

0 0 · · · a 0 b · · · 0
0 0 · · · 0 1 0 · · · 0
0 0 · · · c 0 d · · · 0
...

... . .
. ...

...
...

. . .
...

0 c · · · 0 0 0 · · · d
c 0 · · · 0 0 0 · · · 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= ad

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a · · · 0 0 0 · · · b
...

. . .
...

...
... . .

. ...
0 · · · a 0 b · · · 0
0 · · · 0 1 0 · · · 0
0 · · · c 0 d · · · 0
... . .

. ...
...

...
. . .

...
c · · · 0 0 0 · · · d

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

− bc

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a · · · 0 0 0 · · · b
...

. . .
...

...
... . .

. ...
0 · · · a 0 b · · · 0
0 · · · 0 1 0 · · · 0
0 · · · c 0 d · · · 0
... . .

. ...
...

...
. . .

...
c · · · 0 0 0 · · · d

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (ad− bc)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a · · · 0 0 0 · · · b
...

. . .
...

...
... . .

. ...
0 · · · a 0 b · · · 0
0 · · · 0 1 0 · · · 0
0 · · · c 0 d · · · 0
... . .

. ...
...

...
. . .

...
c · · · 0 0 0 · · · d

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Thus, δn = (ad− bc)δn−1. Continuing recursively we get

δn = (ad− bc)δn−1 = (ad− bc)2δn−2 = · · · = (ad− bc)n−1δ1 = (ad− bc)n,

since it is an easy calculation to show that

δ1 =

∣

∣

∣

∣

∣

∣

a 0 b
0 1 0
c 0 d

∣

∣

∣

∣

∣

∣

= 1

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

= ad− bc.
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Hence, the given matrix is invertible if and only if ad− bc 6= 0. Recall that for 2× 2 matrix we have

[

a b
c d

] [

d −b
−c a

]

=

[

ad− bc 0
0 ad− bc

]

Similarly we have

































a 0 · · · 0 0 0 · · · 0 b
0 a · · · 0 0 0 · · · b 0
...

...
. . .

...
...

... . .
. ...

...
0 0 · · · a 0 b · · · 0 0
0 0 · · · 0 1 0 · · · 0 0
0 0 · · · c 0 d · · · 0 0
...

... . .
. ...

...
...

. . .
...

...
0 c · · · 0 0 0 · · · d 0
c 0 · · · 0 0 0 · · · 0 d

































































d 0 · · · 0 0 0 · · · 0 −b
0 d · · · 0 0 0 · · · −b 0
...

...
. . .

...
...

... . .
. ...

...
0 0 · · · d 0 −b · · · 0 0
0 0 · · · 0 1 0 · · · 0 0
0 0 · · · −c 0 a · · · 0 0
...

... . .
. ...

...
...

. . .
...

...
0 −c · · · 0 0 0 · · · a 0
−c 0 · · · 0 0 0 · · · 0 a

































equals the (2n+1)× (2n+1) diagonal matrix with the first and the last n diagonal entries equal ad− bc
and with 1 in the middle. Thus the inverse of the given matrix is the matrix of the same form in which a
is replaced by d/(ad− bc), b is replaced by −b/(ad− bc), c is replaced by −c/(ad− bc) and d is replaced
by a/(ad − bc).

Problem 6. The Koch snowflake is a figure that is constructed in the following way: The Koch snowflake
at step 0, denoted by K0, is an equilateral triangle with sides of length 1. Then, on each step we break
every side of the figure into three equal segments, on every middle segment we build an equilateral
triangle (facing outwards from our figure) and finally we throw the middle segments away. The Koch
snowflakes K0,K1,K2,K3,K4,K5 are given in the figures below. Calculate the area An enclosed by the
Koch snowflake Kn and determine the limit of An as n → +∞.
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Solution. To calculate the area we need to count the number of sides of each snowflake. K0 has 3 sides,
K1 has 3 · 4 sides, K2 has 3 · 4 · 4 sides, so Kn has 3 · 4n sides. Next calculate the length of the sides. The
sides of K0 have length 1, the sides of K1 have length 1/3 sides, the sides of K2 have length 1/9 sides, so
the sides of Kn have length (1/3)n sides. The area A0 is

√
3/4. To get A1 we add three (the number of

sides of K0) equilateral triangles with sides 1/9 (the length of sides of K1). Thus

A1 = A0 + 3

√
3

4

(

1

3

)2

= A0 +

√
3

12

A2 = A1 + 3 · 4
√
3

4

(

1

9

)2

= A1 +

√
3

12

4

9

...

An = An−1 + 3 · 4n−1

√
3

4

(

1

3n

)2

= An−1 +
3
√
3

4 · 9

(

4

9

)n−1

= An−1 +

√
3

12

(

4

9

)n−1

Thus

An =

√
3

4
+

√
3

12
+

√
3

12

4

9
+

√
3

12

(

4

9

)2

+ · · ·+
√
3

12

(

4

9

)n−1

=

√
3

4
+

√
3

12

1−
(

4
9

)n

1−
(

4
9

)

=

√
3

4
+

√
3

12

9

5

(

1−
(

4

9

)n)

=

√
3

4
+

3
√
3

20

(

1−
(

4

9

)n)

=
2
√
3

5
− 3

√
3

20

(

4

9

)n

Hence lim
n→+∞

An =
2
√
3

5
.

Problem 7. This is a mathematical loan problem. Assume that the interest on this loan is compounded
continuously and the payments are made continuously. This assumption allows us to use differential
equations to model this loan. The annual interest rate on this loan is 6%. (This is 0.5% = 1

200 monthly
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rate.) The payments are made continuously with the monthly rate of 1000
e3/2

e3/2 − 1
dollars. (This is

approximately $1,287.22 dollars monthly payment.) The current amount of this loan is $200,000 dollars.

(a) Set up an initial value problem which models this loan.

(b) Solve the stated initial value problem.

(c) How long will it take for this loan to be paid off? Please answer in years rather than months.

Solution. Denote by L(t) the amount of loan at time t. Then the initial value problem is

L′(t) =
1

200
L(t)− 1000

e3/2

e3/2 − 1
, L(0) = 200000.

It is easier to solve this problem in the general case with r being the interest rate, p the monthly payment
and L0 the initial loan amount.

L′(t) = rL(t)− p, L(0) = L0.

A standard way to solve a linear equation with constant coefficients is as follows:

L′(t)− rL(t) = −p

e−rtL′(t)− re−rtL(t) = −e−rtp

d

dt

(

e−rtL(t)
)

= −e−rtp

e−rtL(t) = e−rt p

r
+ C

e−rtL(t) = e−rt p

r
− p

r
+ L0

L(t) =
p

r
+
(

L0 −
p

r

)

ert

L(t) =
p

r
+

1

r
(rL0 − p) ert

Hence the solution is

L(t) = 200000
e3/2

e3/2 − 1
+ 200

(

1000 − 1000
e3/2

e3/2 − 1

)

et/200 =
200000

e3/2 − 1

(

e3/2 − et/200
)

To answer (c) we set L(t) = 0 and solve for t. This is almost obvious for the last expression. We proceed
to solve the general equation:

p

r
+
(

L0 −
p

r

)

ert = 0

ert =
p

p− rL0

t =
1

r
ln

(

p

p− rL0

)

t = 200 ln





1000 e3/2

e3/2−1

1000 e3/2

e3/2−1
− 1000





t = 200 ln

(

e3/2

e3/2 −
(

e3/2 − 1
)

)
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t = 200 ln
(

e3/2
)

t = 300.

Thus, it will take 25 years to pay off this loan.

Remark. Notice that lim
r→0

1

r
ln

(

p

p− rL0

)

is an interesting limit. Since the meaning (see the third line

in the preceding calculations) of the expression whose limit we are seeking is the time to pay of the loan
of L0 with payments of p, the answer with 0 interest should clearly be L0/p. To get this answer without
knowing the context of the formula is a nice exercise in the application of l’Hôpital’s rule.

Problem 8. A piece of cake is shown below. This piece of cake has
height z, is cut from a cylindrical cake of radius r and has angle θ
at the center of the piece. Assume that the volume of this piece of
cake is 1. Calculate z, r and θ for which the corresponding surface
area of the cake is minimal. The surface area of the cake is pictured
to the right. Note: You can assume that such minimal surface area
exists. You do not need to prove that.

Solution. The volume of the cake is zr2θ/2 = 1. Thus z = 2/(r2θ). The surface area is

S = 2zr + r2θ + zrθ =
4

rθ
+ r2θ +

2

r
.

To find the critical points we solve the system of equations:

∂S

∂r
= − 4

r2θ
+ 2rθ − 2

r2
=

−4 + 2r3θ2 − 2θ

r2θ
= 0

∂S

∂θ
= − 4

rθ2
+ r2 =

−4 + r3θ2

rθ2
= 0

From the second equation we have r3θ2 = 4. Substituting this into the first equation we get 2θ = 4.
Thus, θ = 2, r = 1 is the only critical point. To show that this is a local minimum we use the second
partial derivative test:

∂2S

∂r∂r
=

8

r3θ
+ 2θ − 4

r3
,

∂2S

∂r∂r
(1, 2) = 4 > 0

∂S

∂θ∂r
=

4

r2θ2
+ 2r,

∂S

∂θ∂r
(1, 2) = 3

∂S

∂θ∂θ
=

8

rθ3
∂S

∂θ∂θ
(1, 2) = 1
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Now calculate
∂2S

∂r∂r
(1, 2)

∂S

∂θ∂θ
(1, 2) −

(

∂S

∂θ∂r
(1, 2)

)2

= 4 · 1− 9 = −5 < 0.

Thus the point r = 1, θ = 2 is a local minimum of the function S(r, θ). The corresponding minimal area
is S(1, 2) = 6. Since we assume that the global minimum area exists and since we found only one local
minimum this local minimum must be global. Hence the optimal piece of cake with r = 1, θ = 2, z = 1
has volume 1 and the minimal area 6.

Remark. The following part of the solution was not expected on the exam. It is included here for
completeness. To show that this is actually the global minimum is little tricky. A “simple” way to do it
is to rewrite the formula for S(r, θ) as a sum of nonnegative quantities. To find such a formula we used
the fact that we expect the local minimum of 6 at (1, 2) to be the global minimum. Here is a formula
that proves that the value 6 at (1, 2) is the global minimum:

S(r, θ) =
4

rθ
+ r2θ +

2

r
=

(

2√
rθ

− r
√
θ

)2

+ 2

(

2√
r
+

1

r

)

(

1−
√
r
)2

+ 6

This formula can be verified by a simplification of its left hand side.

This problem can be solved using the Lagrange multiplier method. But solving four nonlinear equations
with four unknowns is tricky. Here is how it goes. We need to minimize

rθz + r2θ + 2rz

under the constraint
r2θz

2
= 1.

The corresponding Lagrange equations are

θz + 2rθ + 2z = λrθz

rz + r2 = λr2z/2

rθ + 2r = λr2θ/2

r2θz = 2

First solve the second and third equation for z and θ, respectively,

z =
2r

λr − 2
and θ =

4

λr − 2
.

Then substitute in the first and fourth equation and simplify. Amazingly, the first equation is a quadratic
equation in λr, while the fourth equations is quite simple:

(λr)2 − 4λr = 0

4r3 = (λr − 2)2.

Hence λr = 4 and r = 1. Thus λ = 4 and θ = 2, z = 1. Since we found only one point satisfying the
Lagrange conditions and since we are given that the surface area has the minimum value under the given
constraint, we conclude that the minimal surface area must be 6.
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Problem 9. The picture on the left shows a simplified
taco. It is a flat unit disk tortilla which is folded along its
diameter so that the flat semi-disks planes form an angle
of π/4. Determine the volume of the filling that can be
fitted in this taco if the filling has to be lined up with the
edges of the semi-disks, as shown in the figure to the left.

Solution. We can calculate the volume for any angle α ∈ (0, π) instead of the special case α = π/4. We
will slice the taco with planes orthogonal to the diameter along which the taco is folded, see the picture
on the left below. If we cut at the distance x from the center, then the intersection will be an isosceles
triangle with the equal sides of length

√
1− x2 and the angle between them α. The area of this triangle

is 1
2

(

1− x2
)

sinα. Integrating this quantity over −1 ≤ x ≤ 1 we get the volume:

sinα

2

∫ 1

−1

(

1− x2
)

dx =
sinα

2

(

2− 2

3

)

=
2

3
sinα.

In the special case α = π/4 we get
√
2/3.

An alternative way to calculate the volume is to slice by planes that are parallel to the diameter along
which the taco is folded (the sharp edge of the taco) and contain the white line segments in the picture,
see the picture on the right above. These white line segments bound the filling of the taco. Then the
integration parameter l ∈

[

0, cos(α/2)
]

and the cross sections are rectangles. Using the appropriate
right-triangles and trigonometry we calculate that the sides of the rectangle at the distance l from the
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sharp edge of the taco are:

2 l tan(α/2)
this is the white line seg-
ment at distance l from the
sharp edge of the taco

and 2

√

1−
(

l

cos(α/2)

)2 this is the corre-
sponding chord of
the unit disk

.

Then the volume is given by the integral

∫ cos(α/2)

0
2 l tan(α/2) 2

√

1−
(

l

cos(α/2)

)2

dl =

∣

∣

∣

∣

∣

∣

t = 1−
(

l
cos(α/2)

)2

(

cos(α/2)
)2
dt = −2ldl

∣

∣

∣

∣

∣

∣

= 2
(

cos(α/2)
)2

tan(α/2)

∫ 1

0

√
t dt

= 2cos(α/2) sin(α/2)
2

3
t3/2
∣

∣

∣

1

0

=
2

3
sin(α)

Problem 10. A unit disk is divided in nine parts by two pairs of parallel lines. The lines are at the
same distance from the center and the pairs of parallel lines are mutually orthogonal. See the figure on
the right. Is it possible to choose the lines in such a way that all nine parts have identical areas? Justify
your answer with exact calculations.

Solution. This is not possible. The proof is by contradiction. Assume that all nine areas are equal.
Since the area of the unit disk is π, the area of each piece is π/9. Place the coordinate system at the
center of the disk and with the coordinate axes parallel to the given lines. Let A,B,C,D be points as
given on the picture below. Since the middle piece is a square, its side is

√
π/3. Therefore the distance

of the parallel lines from the center is
√
π/6. The coordinates of the labeled points are

A =

(√
π

6
, 0

)

, B =

(√
π

6
,

√
π

6

)

, C =

(

−
√
π

6
,

√
π

6

)

, D =

(√
π

6
,

√

1− π

36

)

.

The area immediately above the square is π/9. Since the length of its base CB is
√
π/3 and since its top

is concave down, the length of the vertical line segment BD must be less than
√
π/3. In fact, the length

of this vertical straight edge must is

√

1− π

36
−

√
π

6
.

As a consequence we have the following inequalities:

√

1− π

36
−

√
π

6
<

√
π

3
√

1− π

36
<

√
π

2

1− π

36
<

π

4

1 <
10

36
π

36

10
< π.

0

A

BC

D1

1

-1

-1

Contradiction!
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