Problem 1. Suppose n is a fixed positive integer larger than 1. Let f(x) = x

z > 0.
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(a) Does f have any horizontal asymptotes? If yes, compute them.
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Find the inflection points of f.

a
b) Does f have a global maximum? If yes, find it.
c)

d) Use (a) to prove that ex < ne®/™ for all x > 0.

We compute lim,_, ., e~ " using L’Hopitals rule repeatedly to find that it equals lim,_,., nle™
0.

One finds f/'(x) = 2" te~®(n—x). Setting this equal to 0 yields the only critical point x = n.
Using the first derivative test, one checks this is a local maximum. In addition, since the
derivative is positive before x = n and negative after this point, this local maximum is a
global maximum.

To compute inflection points, we compute the second derivative:

f”(l’) — n((n - 1)xn—2e—x 4 xn—l(_e—x)) . (nxn—le—m o xne—m)
2" 2e *(n(n — 1) — nx — nx + 2°).
This always exists on the domain, and vanishes exactly when 22 —2nz+n(n—1) = 0. Using
the quadratic formula, this occurs when z = n4+/n. Finally, we compute the sign of f”(z) on
either side of these values. In particular, since f”(z) = 2" 2e~*(z— (n++/n))(z— (n—+/n)),
we find that f”(z) > 0 on (0,n —+/n), f’(x) < 0on (n —/n,n++/n) and f’(x) > 0 on
(n + y/n,0). Therefore, x = n £ /n are the inflection points of f(z).

By part (a), "¢~ < n"e™™ for all x > 0. Thus, 2" < n"e*~ ™. Taking nth roots of both
sides, we get © < ne®/™e~! whence the result.

Problem 2. A person 6ft tall walks 5ft/sec along one edge of a straight road 30ft wide. On the
other edge of the road, ahead of the person, there is a light atop a pole 18ft high. How fast is the
length of the person’s shadow increasing when the person is 40ft from the point directly across the
road from the pole?

Let x denote the distance between the person and the point of minimal distance between the
persons side of the road and the pole. Let y denote the length of the person’s shadow. We must
compute %|x:40' To this end we note that there is a right triangle whose height is 18ft and whose
base is y + /302 + z2. Furthermore, this right triangle contains the right triangle with height 6ft
and base y. Therefore, using similar triangles, we deduce that
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which implies that y = 1v/302 + 22. Therefore, % = 1(30? + 22)~1/222% "and so %|,_4 = 2ft/s.
Problem 3.

(1)

Evaluate fol eV,

T



(2) Find a function f such that

2z
? =1+ V1 [f(6)]2dt
1
for all z > 2.

(1) We first use substitution: u = /x implies that du = ﬁdm which, in turn, implies that
2udu = dx. Therefore, the integral equals

1
/ 2ue®.
0

We compute this using integration by parts: [ 2ue® = 2(ue* — [ e“du) = 2(u — 1)e*. This
evaluates to 2.

(2) Taking derivatives of both sides with respect to x and using the Fundamental Theorem of

Calculus yields the constraint
r=+/1+ f(2x)2

This implies that f(2x)? = 2* — 1 so that f(z)* = (£)® — 1. Therefore, f(z) = \/(%£)?2—11is
a solution.

Problem 4. Consider the region R in the xy-plane bounded by y* = 2(z — 3) and y? = x. Find
the volume of the solid generated by rotating R around the z-axis.

By graphing and setting the curves equal to each other, one deduces that the relevant volume is
given by the expression

6 6
/ rxdr — / m2(x — 3)dr = 187 — 97 = 9.
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Problem 5. Find the maximal area of a rectangle that is inscribed in the ellipse (z/2)% +y* =1
and whose sides are parallel to the coordinate axes in the xy-plane.

Let (x,y) be the intersection of the rectangle with the ellipse in the first quadrant. We need
to maximize f(z,y) = 4xy subject to g(x,y) = 2% + 4y*> — 4 = 0. By the method of Lagrange
multipliers, a maximum occurs as a solution to 4y = 2 Ax and 4x = 8\y, which implies that
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Therefore, at the maximum, 22 = 4y%. Given the constraint, we deduce that x> = 4y?> = 2. The
fact that (z,y) is in the first quadrant implies that z = v/2 and y = % for a maximum area of 4
units squared.

Problem 6. Let @ € R" be such that @’ @ = 1. Define the matrix M := I — 2@u’; here, I denotes
the n x n identity matrix and @! denotes the transpose of the vector .

(a) Compute MT — M and M?.

(b) Use part (a) to show that if A is an eigenvalue of M, then A € {—1,1}.

(c) Find an eigenvector of M corresponding to the eigenvalue —1 and an eigenvector of M
corresponding to the eigenvalue 1.

6. (a) Straightforward that MT = M and M? = I.



(b) For example, if A is such that M@ = A\, @ # 0, then M@ = A% and since M? = I we
get A2 = 1. Since M is symmetric we know that A € R and so A = £1. Alternately, one can also
appeal to the known result that the eigenvalues of an orthogonal matrix are of modulus 1, but here
the instructions were clear as to use (a) to arrive to the conclusion...

(¢) M@ = —i and for any non-zero ¢ orthogonal to @, we have M7 = .

Problem 7. Let n € N and let V' be an n-dimensional vector space over C. Suppose T : V — V is
a linear transformation which has the property that there exists an integer m > 1 such that 7™ = 0.

(1) Show that T" has an eigenvector corresponding to the eigenvalue 0.
(2) Prove, using induction, that there exists a basis for V' such that the matrix of 7" with respect
to this basis is strictly upper triangular.

(1) Let k > 0 be the minimum positive integer such that 7% = 0. If k = 1 then T = 0 and
any nonzero vector will do. Otherwise, 7%~! # 0 and there exists a vector w such that
T* 1w # 0. Therefore, T(T* 'w) = 0 and we may choose v = T* 1w,

(2) We proceed by induction on the dimension of V. If the dimension of V' = 0 then 7T is
scalar multiplication so the hypotheses imply T" = 0 and the result follows. Now suppose
dimV = n > 1 and that the result holds on any vector space U of dimension < n. To
employ the induction hypothesis, we note that T'|;,7 maps to im7. By the rank-nullity
theorem and the previous part, the dimension of im 7" is less than n so that there exists a
basis vy, ... v, of imT such that the matrix for T'|;,,7 with respect to this basis is strictly
upper triangular. If wq, ..., w; is a basis for ker T, then, as one can check, the matrix for T’
with respect to wy, ..., wy, v, ..., v, is strictly upper triangular, as desired.

Problem 8. Find the general solution of the system of differential equations

{ g—f = z+1
Y= -y
8. Solve first 2’ = x4+ 1 by integrating [ dz/(z +1) = [ dt to get z(t) = kre' — 1,k € R. Now, the
second equation is
Y = —y+ (ke = 1) = —y + 1 — 2kje’ + k2e*.
To solve it, we find the generic solution of the homogenous part i/ = —y which is kse™, ko € R,
and then a particular solution of the form « + Bef + ve?t. Substituting in the equation in y we get
2
the particular solution 1 — ket + %e%. All in all, we conclude that the general solution is

]{32
2(t) = ket — 1,y(t) = ke " + 1 — kye’ + 31621&’ ki, ks € R.

Problem 9. The sequence (a,)32, is defined recursively by

1 —n
a; = ]., api+1 = (1 + 5) (07

(a) Show that (a,) is bounded and monotonic, and compute lim a,,.

(b) Find the radius of convergence of the series Z anr®™.

n=1



9. (a) Simply note that all terms a,, > 0 and that a,;/a, < 1. Thus, (a,) is non-increasing. This
gives that a, is bounded below by 0 and above by 1. To find the limit, let ¢ = lim a,, and pass to
the limit in the recursion to get £ = e~ ¢, i.e., £ = 0.

(b) We use the ratio test. We compute

R s

lim

—-1,.2
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Thus, we need e~'2? < 1, i.e., |z| < e7'/2. The radius of convergence is e~/2,

oo oo
Problem 10. Let Z x,, be a convergent series of positive numbers. Show that the series Z cos(xy)

n=1 n=1
o
is divergent and that the series Z sin(x,,) is convergent.
n=1

10. Since the series converges, we know x,, — 0 as n — oo. In particular, for n > N sufficiently
large we have z, € (0,7/2). Now, since cos(z,) — cos(0) = 1 as n — oo, we see that the series of
cosines diverges. Also, since for n > N we have 0 < sin(z,) < x,, a direct comparison of the sine
series with the original one gives its convergence.



