
Graduate Qualifying Exam Solutions – Fall 2014

Problem 1. Suppose f : R→ R satisfies f(0) = 2 and |f(x)− f(y)| ≤ |x− y|5/4 for all real
numbers x and y.

(a) Prove that f is continuous at all x using the rigorous ε− δ definition of continuity.

(b) Prove that f is differentiable at all x using the definition of the derivative.

(c) Compute

∫ 6

3

f(y) dy.

Solution: For part (a), let ε > 0 and fix x. We must show that there exists δ > 0 such
that if |x− y| < δ, then |f(x)− f(y)| < ε. Choose δ = ε4/5. Then if |x− y| < δ,

|f(x)− f(y)| ≤ |x− y|5/4 < δ5/4 = ε.

For part (b), fix x and let h 6= 0. Then |f(x+ h)− f(x)| ≤ |h|5/4, which implies that

0 ≤ |f(x+ h)− f(x)|
|h|

≤ |h|1/4.

Taking the limit as h → 0, we see that limh→0 |(f(x + h) − f(x))/h| = 0 by the squeeze
theorem, so that limh→0(f(x + h) − f(x))/h = 0, meaning that f ′(x) exists and is equal to
zero.

For part (c), f ′(x) = 0 at all x, f is constant, so it must be equal to 2 at all x (since
f(0) = 2). Therefore the integral is equal to 6.

Problem 2. Let f(x) =

∫ g(x)

0

1√
1 + t3

dt, where g(x) =

∫ cosx

0

(sin(t2) + 1) dt. Find f ′(π/2).

Solution: Using the fundamental theorem of calculus and the chain rule, we have

f ′(x) =
g′(x)√

1 + g(x)3
and g′(x) = − sinx(sin(cos2 x) + 1).

Then g′(π/2) = −1, and g(π/2) =
∫ 0

0
sin(t2) + 1 dt = 0, so f ′(π/2) = −1.

Problem 3. Find the point on the parabola y = 1 − x2 in the first quadrant at which the
tangent line cuts off the triangle in the first quadrant with smallest area.

Solution: Let (c, 1−c2) be a point on the parabola in the first quadrant, hence 0 ≤ c ≤ 1.
The slope of the tangent line to the parabola at this point is −2c, so the equation of the
tangent line is y = −2cx+c2+1. To determine the side lengths of the triangle this line forms



with the x- and y-axes, we find the x- and y-intercepts, which are ( c
2+1
2c
, 0) and (0, c2 + 1).

Thus the area of the triangle in terms of the parameter c is

A(c) =
1

2
(c2 + 1)

(
c2 + 1

2c

)
=

1

4

(
c3 + 2c+

1

c

)
.

To minimize the area, we look for critical points of A on the given interval and compare
the values of A at these critical points to the value at the endpoints c = 0 and c = 1. We
have A′ = 1

4
(3c2 + 2 − 1

c2
). Setting A′ = 0 and solving the resulting quadratic in c2 yields

c2 = 1
3
, so c = 1√

3
. Now A( 1√

3
) = 4

3
√
3
< 1 = A(1), and A(c)→∞ as c→ 0+. Therefore the

minimum occurs at the point ( 1√
3
, 2
3
).

Problem 4. Find all points P on the ellipsoid 2x2 + 2y2 + z2 = 28 such that the tangent
plane to the ellipsoid at P is parallel to the plane passing through the the three points
(1, 3, 1), (3, 0,−3), and (0, 4, 2).

Solution: It’s not hard to visualize that there must be two such points. Taking the cross
product of two of the displacement vectors between the three points yields the normal vector
of the plane passing through them: i+ 2j− k. The normal vector to the ellipsoid at a point
(x, y, z) is 4xi + 4yj + 2zk. Therefore, the tangent plane to the ellipsoid at P = (x, y, z) is
parallel to the plane if 4xi + 4yj + 2zk is a scalar multiple of i + 2j− k; for this to happen
there must exist a number c such that 4x = c, 4y = 2c and 2z = −c. Therefore z = −2x and
y = 2x. For P to be on the ellipsoid, we must then have 2x2 + 2(2x)2 + (−2x)2 = 14x2 = 28,
so x = ±

√
2. So the two points are (

√
2, 2
√

2,−2
√

2) and (−
√

2,−2
√

2, 2
√

2).

Problem 5. Find the volume of the smaller of the two regions enclosed by the surfaces
z = 1 + x2 + y2 and x2 + y2 + z2 = 11.

Solution: We will set up a triple integral in cylindrical coordinates to calculate the
volume which is bounded below by the paraboloid z = 1 + x2 + y2 and above by the sphere
x2 + y2 + z2 = 11. To find the intersection of the two surfaces, we solve for x2 + y2 = z − 1
in the first equation and substitute in the second equation to get z − 1 + z2 = 11. Solving
the quadratic yields z = 3 (since z > 0), so the curve of intersection in the plane z = 3 is
x2 + y2 = 2. This also bounds the shadow of the solid in the xy-plane, so we use this to
determine our bounds of integration. Thus the volume is given by

∫ 2π

0

∫ √2
0

∫ √11−r2
1+r2

r dz dr dθ = 2π

∫ √2
0

r
√

11− r2 − r − r3 dr

= 2π

[
−1

3
(11− r2)3/2 − 1

2
r2 − 1

4
r4
]√2
0

= 2π(
1

3
(11)3/2 − 11).



Problem 6. Show that∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

e−(x
2+y2+z2)

√
x2 + y2 + z2 dx dy dz = 2π.

(Hint: the integral above is improper. To evaluate it, you should compute a triple integral
over a suitably chosen bounded region and take the limit as that region grows without
bound.)

Solution: Since the integrand seems tailor made for spherical coordinates, it makes sense
to integrate over a sphere of radius r centered at the origin, and then take the limit as
r →∞. So we have∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

e−(x
2+y2+z2)

√
x2 + y2 + z2 dx dy dz = lim

r→∞

∫ 2π

0

∫ π

0

∫ r

0

ρe−ρ
2

(ρ2 sinφ) dρ dφ dθ

= lim
r→∞

2π

(∫ π

0

sinφ dφ

)(∫ r

0

ρ3e−ρ
2

dρ

)
.

The first integral is easily shown to equal 2. The second integral can be evaluated by first
making the substitution w = ρ2, and then using integration by parts. This yields∫ r

0

ρ3e−ρ
2

dρ =
1

2
[1− r2e−r2 − e−r2 ],

so we have∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

e−(x
2+y2+z2)

√
x2 + y2 + z2 dx dy dz = lim

r→∞
2π · 2 · 1

2
[1− r2e−r2 − e−r2 ]

= 2π.

(Note that l’Hopital’s rule can be used to show that limr→∞ r
2e−r

2
= 0.)

Problem 7. Suppose {u,v,w} is a linearly independent set of vectors in a vector space V .
Working directly from the definition of linear independence, show that {u+v,v+w,u+w}
is also linearly independent.

Solution: Let c1, c2, and c3 be scalars for the vector space V , and suppose that

c1(u + v) + c2(v + w) + c3(u + w) = 0.

Then we have (c1+c3)u+(c1+c2)v+(c2+c3)w = 0. Since {u,v,w} is linearly independent,
we have c1 + c3 = 0, c1 + c2 = 0, and c2 + c3 = 0. This is a homogeneous linear system in c1,
c2 and c3 with coefficient matrix1 0 1

1 1 0
0 1 1

 ∼
1 0 1

0 1 −1
0 0 2

 .
Since the coefficient matrix has full rank, the homogeneous system has only the trivial
solution, c1 = c2 = c3 = 0. Therefore {u + v,v + w,u + w} is linearly independent.



Problem 8. Let M be the 1000× 1000 matrix consisting of all 1s. Find the characteristic
polynomial for M .

Solution: Let p(λ) be the characteristic polynomial of M . We will consider the eigen-
values of M . Since M has 1000 identical rows, it has rank 1. Thus M is not invertible,
so 0 is an eigenvalue of M . Its corresponding eigenspace, which is the null space of M ,
has dimension 999. The geometric multiplicity of an eigenvalue is less than or equal to its
algebraic multiplicity, so we know that λ999 divides p(λ). Now p(λ) has degree 1000, so there
is at most one other eigenvalue. We note that the sum of each row of M is 1000, so if 1 is
the vector in R1000 consisting of all 1s, then M1 = 10001, so 1000 is another eigenvalue of
M . Therefore we must have p(λ) = λ999(λ− 1000).

Problem 9. Consider the differential equation y′ = Ay2 where A is a real constant.

(a) Find the general solution (your solution will contain the parameter A).

(b) Find a value of A for which there exists a solution y(t) that satisfies y(0) > 0 and
y(1) < 0 and is continuous on an open interval containing the closed interval [0, 1] or
explain why such an A does not exist.

Solution: For (a), if A = 0, all solutions are constant and all constants are solutions.
Note also that for any A, the constant function y = 0 is a solution. Suppose that A 6= 0. By
the uniqueness theorem, if y(t) is a solution that equals zero at any time t0, then it must be
zero for all t. Thus, if y is not identically zero, it is never zero and we may use separation of
variables to find the general solution. Separating variables give us dy/y2 = A dt. Integrating
and solving for y we get y(t) = 1/(−At− C) where C is an arbitrary constant.

The situation in (b) is impossible. Any such solution y(t) would have to equal zero at
some t ∈ (0, 1) by the intermediate value theorem. However, by the uniqueness theorem,
as indicated in the answer to part (a), this implies that y(t) is identically zero which it
can’t be if it is to satisfy the given conditions at t = 0 and t = 1. This can also be
seen by using the general solution formula in part (a). If y(0) > 0, we must have C < 0.
Then y(1) = 1/(−A − C). For this to be negative, we must have −A < C. The solution
y(t) = 1/(−At− C) is undefined at t = C/− A, but C and −A are both negative, so this t
is positive, and since −A < C, t is also less than 1, so y(t) is not continuous on [0, 1].

Problem 10. For n ∈ N, define an =
√
n+ 1−

√
n.

(a) Compute lim
n→∞

an.



(b) Does the series
∞∑
n=1

(−1)nan converge absolutely, converge conditionally or diverge? Jus-

tify your answer by using one or more series tests, making sure to explain why the tests
apply.

Solution: For part (a), the limit is zero. By the mean value theorem applied to f(x) =√
x, we get that an = 1/(2

√
ξ) for some number ξ between n and n+1. Thus 1/(2

√
n+ 1) ≤

an ≤ 1/(2
√
n), so that an → 0 by the squeeze theorem.

For part (b), the series converges conditionally. The given series converges by the alternat-
ing series test: the terms go to zero, alternate in sign, and the inequality in the solution to
part (a) shows that an decreases monotonically. The series does not converge absolutely by
the comparison test. The inequality in the solution to part (a) shows that an ≥ 1/(2

√
n+ 1),

and the series
∑∞

n=1 1/(2
√
n+ 1) diverges (by the integral test or by recognizing it as a p-

series with p = 1/2, which is known to diverge.


