
Qualifying Exam
Fall 2023
September 18, 2023 Number

You may use calculators for this exam. — Justify all your answers. Answer specific questions

by giving the exact values, not approximations.

Problem 1. Use partial fractions to find the Taylor series about x = 0 of the function
1

x2 + x− 2
and

determine its open interval of convergence.

Solution.

1

x2 + x− 2
=

1

3

(

1

x− 1
− 1

x+ 2

)

=
1

3

(

1

2

( −1

1− (−x/2)

)

− 1

1− x

)

=
1

3

(

1

2

∞
∑

n=0

(−1)n+1
(x

2

)n
−

∞
∑

n=0

xn

)

=
1

3

∞
∑

n=0

(

(

−1

2

)n+1

xn − xn

)

=

∞
∑

n=0

1

3

(

(

−1

2

)n+1

− 1

)

xn

with convergence occurring for the set {x : |x/2| < 1} ∩ {x : |x| < 1}. Thus the interval of convergence is
(−1, 1).
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Problem 2. Consider the temperature in R
3 given

by

T (x, y, z) = x4 + y4 + z4, (x, y, z) ∈ R
3.

(a) Determine the minimum and the maximum
value of the function T on the unit sphere in
R
3 centered at the origin.

(b) Find the total number of critical points of the
function T on the unit sphere. Determine how
many critical points are minimums, maximums
and saddle points.

(c) The picture on the right shows a heat map and
isotherms (lines of the same temperature) of T
on the unit sphere. Using the colors and the
isotherms in the picture, describe which visible
critical points are minimums, maximums, and
saddle points.

Solution. Let g(x, y, z) = x2 + y2 + z2, ot that the constrain is g(x, y, z) = 1. To apply the Lagrange
multiplier method we calculate

(∇T )(x, y, z) =
〈

4x3, 4y3, 4z3
〉

, (∇f)(x, y, z) =
〈

2x, 2y, 2z
〉

.

To find the critical points of the function T on the unit sphere we solve the system of equations
〈

4x3, 4y3, 4z3
〉

= λ
〈

2x, 2y, 2z
〉

, x2 + y2 + z2 = 1,

for (x, y, z) ∈ R
3 and λ ∈ R\{0}. The solutions for λ are 2

3 , 1 and 2 with the corresponding points (x, y, z)
as follows:

• for λ = 2
3 we have eight points

(

1√
3
, 1√

3
, 1√

3

)

,
(

1√
3
, 1√

3
,− 1√

3

)

,
(

1√
3
,− 1√

3
, 1√

3

)

,
(

− 1√
3
, 1√

3
, 1√

3

)

,
(

1√
3
,− 1√

3
,− 1√

3

)

,
(

− 1√
3
, 1√

3
,− 1√

3

)

,
(

− 1√
3
,− 1√

3
, 1√

3

)

,
(

− 1√
3
,− 1√

3
,− 1√

3

)

, and the temperature at

these points is 1
3 ,

• for λ = 1 we have twelve points
(

1√
2
, 1√

2
, 0
)

,
(

1√
2
,− 1√

2
, 0
)

,
(

− 1√
2
, 1√

2
, 0
)

,
(

− 1√
2
,− 1√

2
, 0
)

,
(

1√
2
, 0, 1√

2

)

,
(

1√
2
, 0,− 1√

2

)

,
(

− 1√
2
, 0, 1√

2

)

,
(

− 1√
2
, 0,− 1√

2

)

,
(

0, 1√
2
, 1√

2

)

,
(

0, 1√
2
,− 1√

2

)

,
(

0,− 1√
2
, 1√

2

)

,
(

0,− 1√
2
,− 1√

2

)

,

and the temperature at these points is 1
2 ,

• for λ = 2 we have six points (1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1), (0, 0,−1) and the tem-
perature at these points is 1.

(a) Since the extreme values of the temperature on the unit sphere must occur at the critical points obtained
above, we deduce that the maximum temperature is 1, the minimum temperature is 1

3 , and the value 1
2 is

taken at the saddle points.
(b) In the above work, we calculated all the critical points on the unit sphere. There are 26 critical points;
8 minimums, 12 saddle points, and 6 maximums.
(c) As we complete the image of the unit sphere in our imagination, we see that there are six points at
which the temperature is encoded with the light yellow color. Therefore the temperature is 1 at those
points. There are eight points at which the temperature is encoded with the blue color. Therefore,
the temperature is 1

3 at those points. Notice that in the given picture there are four great circles that is
isotherms. These great circles intersect in twelve points which are the saddle points for the temperature. In
the neighbourhood of these points the temperature takes values higher than 1

2 (indicated with a yellowish)
and the temperature lower that 1

2 indicated with the blueish color.

OVER



September 18, 2023 Qualifying Exam Fall 2023 Page 3 of 11

Problem 3. Let n be an integer greater than 1 and let A be an n × n matrix. Let 1 ∈ R
n be the vector

whose all entries equal to 1. Consider the following block matrix

M =

[

A 1

1
⊤ 0

]

.

Here M is an (n+ 1)× (n+ 1) matrix. Recall that an n× n matrix A is said to be positive definite if for
all nonzero vectors v ∈ R

n we have v
⊤Av > 0.

(a) Find a nonsingular 3× 3 matrix A such that the corresponding matrix M is singular.

(b) Prove the following implication: If a matrix A is positive definite, then the corresponding matrix M
is nonsingular.

Solution 1. (a) One possible answer is

A =





1 0 0
0 1 0
0 3 1



 .

(b) A is positive definite ⇒ A is nonsingular. Thus there exists a unique c 6= 0 such that Ac = 1.

Suppose M is singular. Then the columns of M are linearly dependent, i.e., for the linear combination,
where Ai = ith column of A,

d1

[

A1

1

]

+ d2

[

A2

1

]

+ . . . + dn

[

An

1

]

+ dn+1

[

1

0

]

= 0,

not all di’s are zeroes. Note that dn+1 6= 0. If this is not so, then d1A1 + d2A2 + . . . dnAn = 0, which
implies that d1 = d2 = . . . = dn = dn+1 = 0 since A is nonsingular, contradicting the assumption that M
is singular.

Thus,

e1

[

A1

1

]

+ e2

[

A2

1

]

+ . . .+ en

[

An

1

]

=

[

1

0

]

where ei = − di
dn+1

, i.e.,
[

A
1
⊤

]

e =

[

1

0

]

.

Now e must be equal to c, since Ac = 1 and c is unique. It follows that

1
⊤
c = c

⊤
1 = 0

⇒ c
⊤Ac = 0.

But c 6= 0, contradicting the premise that A is positive definite.

Solution 2. Let n be a positive integer and let A be a nonsingular n× n matrix. Then for all x ∈ R
n and

all α ∈ R we have
[

A 1

1
⊤ 0

] [

x

0

]

=

[

0

0

]

⇔ x = 0,

and
[

A 1

1
⊤ 0

] [

0

α

]

=

[

0

0

]

⇔ α = 0.



Therefore,
[

A 1

1
⊤ 0

] [

x

α

]

=

[

0

0

]

⇒ x 6= 0 and α 6= 0.

Consequently,
[

A 1

1
⊤ 0

] [

x

α

]

=

[

0

0

]

⇔ x = −αA−1
1 and 1

⊤A−1
1 = 0. (1)

The equivalence in (1) yields the following equivalence: The matrix

[

A 1

1
⊤ 0

]

is singular if and only if

1
⊤A−1

1 = 0. That is,

[

A 1

1
⊤ 0

]

is singular if and only if the nonzero vectors 1 and A−1
1 are orthogonal.

We first answer (b). Assume that A is positive definite. Then A−1 is also positive definite. Therefore
1
⊤A−1

1 > 0. Thus, the vectors 1 and A−1
1 are not orthogonal. By the equivalence in the last sentence of

the preceding paragraph, we deduce that the matrix

[

A 1

1
⊤ 0

]

is nonsingular.

To answer (a) we need to find a nonsingular 3× 3 matrix A such that 1⊤A−1
1 = 0. Since it is easiest

to calculate the inverse of a diagonal matrix we will find a, b, c ∈ R \ {0} such that we have

0 =
[

111
]





1
a 0 0
0 1

b 0
0 0 1

c









1
1
1



 =
1

a
+

1

b
+

1

c
.

Hence,

A =





−1 0 0
0 2 0
0 0 2





is a specific solution for (a). The last claim is confirmed by









−1 0 0 1
0 2 0 1
0 0 2 1
1 1 1 0

















1
−1

2
−1

2
1









=









0
0
0
0









.
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Problem 4. By R+ we denote the set of positive real
numbers. Let a ∈ R+ and consider the two functions

fa(x) = −ax+ ex and ga(x) = ax− log(x).

(a) Prove that for every a ∈ R+ there exists s ∈ R

such that fa(s) ≤ fa(x) for all x ∈ R.

(b) Prove that for every a ∈ R+ there exists t ∈ R+

such that ga(t) ≤ ga(x) for all x ∈ R+.

(c) Find the value of a ∈ R+ for which the cor-
responding minimum values of fa and ga are
equal. That is find the value of a ∈ R+ for
which the graphs of fa and ga look like in the
picture.

Solution. (a) Let a ∈ R+ be fixed. Since f ′
a(x) = −a + ex, the function fa has only one critical point

s = ln a. Since the value of the second derivative of fa at s = ln a equals a > 0, the function fa takes its
minimum at s = ln a. The minimum value is fa(s) = a− a ln a = a(1− ln a).

(b) Let a ∈ R+ be fixed. Since g′a(x) = a − 1/x, the function ga has only one critical point t = 1/a.
Since the value of the second derivative of ga at t = 1/a equals a−2 > 0, the function ga takes its minimum
at t = 1/a. The minimum value is ga(t) = 1 + ln a.

(c) We need to solve the following equation for a

1 + ln a = a− a ln a.

We rewrite the equation as
(1 + a) ln a = a− 1

and further

ln a =
a− 1

a+ 1

It is clear that for both functions ln a and a−1
a+1 have zero for a = 1. Since the derivative of the function

a 7→ ln a− a− 1

a+ 1
, a > 0,

is strictly positive, the value a = 1 is the only value for which functions fa and ga have the same minimum.
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Problem 5. Consider four unit disks centered at the
points (1, 0), (0, 1), (−1, 0), (0,−1) and the red point
positioned at (0, 0), as shown in the picture to the
right. In this picture, the union of the four disks is
colored gray. Calculate the exact value of the average
distance of the red point to a point in the gray area.

Hint: Join the darker gray points and the red
point with line segments, and consider the par-
tition of the gray area obtained in this way. See
the picture to the left.

Solution. Denote by Q one the four congruent pieces that the gray area partitions into, following the hint.
Q consists of an isosceles right triangle of the area 1 and a half of a unit disk. Thus, the area of Q is
1 + π/2. The average distance that the problem seeks is the same as the average distance of a point in Q
to the red point. By definition the average distance is

1

areaQ

∫∫

Q

√

x2 + y2dxdy.

We use the polar coordinates and Fubini’s theorem to calculate this integral:

∫∫

Q

√

x2 + y2dxdy =

∫ π/4

−π/4

∫ 2 cos θ

0
r2drdθ

=
8

3

∫ π/4

−π/4

(

cos θ
)3
dθ

=
8

3

∫ π/4

−π/4

(

1− (sin θ)2
)(

cos θ
)

dθ

=
8

3

∫ π/4

−π/4

(

1− (sin θ)2
)(

cos θ
)

dθ

=
8

3

∫ π/4

−π/4
(cos θ)dθ − 8

3

∫ π/4

−π/4
(sin θ)2d(sin θ)

=
8
√
2

3
− 4

√
2

9
=

20
√
2

9

Thus, the average value is
20

√
2

9

1 + π
2

=
40
√
2

9(2 + π)
≈ 1.22246.
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Problem 6. Let n be a positive integer and let Hn be the n-th harmonic number, that is

Hn = 1 +
1

2
+ · · ·+ 1

n
.

Prove that for all real numbers p such that p > 1 the series

∞
∑

n=1

Hn

np

converges.

Solution. Using the same idea as the integral test, note that for every n ∈ N

Hn = 1 +
1

2
+ . . .+

1

n
≤ 1 +

∫ n

1

1

x
dx = 1 + ln(n).

Therefore,
∞
∑

n=1

Hn

np
≤

∞
∑

1

1 + ln(n)

np
≤ 1 +

∫ ∞

1

1 + ln(x)

xp
dx = 1 +

p

(1− p)2

for p > 1. Thus,
∑∞

n=1
Hn

np converges by the integral test.

Another approach is to note that, since p > 1, there exists an ǫ > 0 such that p − ǫ > 1. For this
ǫ, limn→∞

ln(n)
nǫ = 0 (which can be shown by, say, the l’Hopital’s rule), which means that there exists an

N ∈ N such that, for all n ≥ N , ln(n)
nǫ < 1 and

ln(n)

np
=

ln(n)

nǫ
· 1

np−ǫ
≤ 1

np−ǫ
.

This implies that
∑∞

n=1
ln(n)
np converges by the comparison test and the well-known property of the harmonic

series. Thus,
∞
∑

n=1

1

np
+

∞
∑

n=1

ln(n)

np
=

∞
∑

1

1 + ln(n)

np

also converges, and likewise for
∑∞

n=1
Hn

np .
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Problem 7. Consider the sequence of functions

x 7→ sin(nx)

n sin(x)
, x ∈ (−π, 0) ∪ (0, π), n ∈ N.

(a) Prove that for every n ∈ N there exist a continuous function fn : (−π, π) → R such that

fn(x) =
sin(nx)

n sin(x)
for all x ∈ (−π, 0) ∪ (0, π).

(b) Prove that there exists a function g : (−π, π) → R such that for all x ∈ (−π, π) we have

lim
n→∞

fn(x) = g(x).

Plot an accurate graph of the function g and state its range in set notation.

Solution. (a) Let n ∈ N be arbitrary. Since the function x 7→ sin(nx)
n sin(x) is continuous on the open set

(−π, 0) ∪ (0, π), and

lim
x→0

sin(nx)

n sin(x)
= lim

x→0

sin(nx)
nx

sin(x)
x

=
limx→0

sin(nx)
nx

limx→0
sin(x)

x

= 1,

the function fn : (−π, π) → R defined piecewise by

fn(x) =

{

sin(nx)
n sin(x) , if x ∈ (−π, 0) ∪ (0, π),

1, if x = 0,

is continuous on (−π, π).
(b) Let x ∈ (−π, π) and calculate lim

n→∞
fn(x). Consider two cases: x = 0 and x ∈ (−π, 0) ∪ (0, π). If

x = 0, then
lim
n→∞

fn(0) = lim
n→∞

1 = 1.

Let x ∈ (−π, 0) ∪ (0, π) be arbitrary. Then | sin x| > 0. Since for all n ∈ N we have | sin(nx)| ≤ 1, we have

∀n ∈ N

∣

∣

∣

∣

sin(nx)

n sin(x)

∣

∣

∣

∣

=
| sin(nx)|
n| sin(x)| ≤

1

n| sinx| . (2)

Since | sin x| > 0 is a fixed positive number, (2) and the squeeze theorem yield

lim
n→∞

fn(x) = 0.

Set

g(x) =

{

0, if x ∈ (−π, 0) ∪ (0, π),

1, if x = 0.

The range of g is the set {0, 1}; that is the set which consists of two elements: 0 and 1; its graph is below.

-π
-
3π

4

-
π

2

-
π

4

0 π

4

π

2

3π

4

π

0

1

2

1
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Problem 8. Suppose you are climbing a hill whose shape in xyz-space is given by the equation

z = f(x, y) = 1000 − 1

200
x2 − 1

400
y2

where x, y, and z (height) are measured in meters. You are at the point P = (120,−160, 864) on the hill.
In the contour plot below, the projection (120,−160) of P onto xy-plane is the blue point.

(a) If you start walking Northeast, will you ascend or descend? With what slope?

(b) In which direction from the point P is the slope of ascent the largest? What is the rate of ascent in
that direction? Express the direction in two different ways:

(i) as a two-dimensional vector in xy-plane,

(ii) as an approximate direction on the 32-wind compass rose; see the picture of the rose below.

(c) Notice the projection of P onto xy-plane is at the distance 200 meters from the origin (0, 0). Consider
all the points

(

x, y, f(x, y)
)

on the hill such that
√

x2 + y2 = 200. The projections of those points
form the green circle in the contour plot below. Find the maximum rate of ascent for the points
described in this paragraph. At what point(s) does this maximum rate of ascent occur?

(d) Recall that the path of steepest ascent is a path on the hill that follows the direction of the largest
slope of ascent at every point along the path. Show that the projection on the xy-plane of the path
of steepest ascent through the point (120,−160, 864) is a part of the parabola y2 = ax, where a is a
real number. Determine the exact value of a.

-200 -100 0 100 200

-200

-100

0

100

200

E

N

W

S

NENW

SW SE

EN
E

N
N
E

N
N
W

WNW

WS
W

S
S
W

S
S
E

ESE

EbN

N
E
bE

N
E
b
NN
b
E

N
b
W

N
W
b
N

N
W
bW

WbN

WbS

S
W
bW

S
W
b
S

S
b
W

S
b
E

S
E
b
S

S
E
bE

EbS

The positive x-axis represents East and
the positive y-axis represents North.
The picture on the left gives a topo-
graphic map of the hill with level curves.
Above is the 32-wind compass rose.
The abbreviation “NEbN” stands for
“Northeast by North”. These abbrevia-
tions are used in navigation.

Solution. It will be helpful to calculate the gradient of f :

(∇f)(x, y) =
〈

− x

100
,− y

200

〉

.

The gradient vector at the point (120,−160) is

(∇f)(120,−160) =

〈

−120

100
,
160

200

〉

=

〈

−6

5
,
4

5

〉

.
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(a) The unit vector in the direction Northeast is

〈

cos
(π

4

)

, sin
(π

4

)〉

=

√
2

2
〈1, 1〉.

Therefore, if we proceed in the direction Northeast the rate of change of altitude will be

√
2

2

(

(∇f)(120,−160)
)

· 〈1, 1〉 =
√
2

2

〈

−6

5
,
4

5

〉

· 〈1, 1〉 = −
√
2

5
≈ −0.282843.

Thus, if one proceeds in the direction Northeast one would be descending with the slope of −
√
2/5.

(b) The gradient gives the direction of steepest ascent and the norm of the gradient vector gives the
slope of the steepest ascent. As we calculated, the gradient is

〈

−6

5
,
4

5

〉

,

∥

∥

∥

∥

〈

−6

5
,
4

5

〉
∥

∥

∥

∥

=
2
√
13

5
≈ 1.44222.

The unit vector in the direction of the gradient is

〈

− 3√
13

,
2√
13

〉

= 〈cosα, sinα〉 , where α = arccos

(

− 3√
13

)

≈ 2.55359.

To determine which is the closest direction on the 32-wind compass rose we need to calculate the approxi-
mate radian measures of the nearby compass directions: Nothwest is 3π/4 ≈ 2.35619, Northwest-by-West
is 13π/16 ≈ 2.55254 and West-Northwest is 7π/8 ≈ 2.74889. Thus, the closest direction on the 32-wind
compass rose is Northwest-by-West.

(c) The points on the circle are given by

(200 cos θ, 200 sin θ) , θ ∈ [0, 2π).

To find the maximum rate of ascent at these points, we need to calculate the norm of the gradients at all
those points:

∥

∥

∥

∥

〈

−200 cos θ

100
,−200 sin θ

200

〉∥

∥

∥

∥

= ‖〈−2 cos θ,− sin θ〉‖ =
√

4(cos θ)2 + (sin θ)2 =
√

3(cos θ)2 + 1.

Clearly the largest value of the preceding expression is
√
3 + 1 = 2, i.e., the maximum rate of ascent is 2,

which occurs at θ = 0 and θ = π; i.e., the points at which the ascent is steepest are (200, 0) and (−200, 0).

(d) To determine the path of the steepest ascent from the point (120,−160), we need to solve the linear
system of differential equations:

x′ = − x

100
, y′ = − y

200
, x(0) = 120, y(0) = −160.

The solution is
x(s) = 120e−s/100, y(s) = −160e−s/200, s ≥ 0.

Clearly

y2 = 1602e−s/100 =
1602

120
120e−s/100 =

640

3
x.
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Problem 9. Find a symmetric real 3× 3 matrix A whose rank is 1, and A
[

3 2 1
]⊤

=
[

1 −2 2
]⊤

.

Solution 1. Since the rank of A is 1 the column space of A is one-dimensional. Since





1
−2
2



 ∈ Col(A),

we deduce that each column of A is a scalar multiple of
[

1 −2 2
]⊤

. Therefore, there exist α, β, γ ∈ R such
that

A =





α β γ
−2α −2β −2γ
2α 2β 2γ



 .

Since A is symmetric we must have
β = −2α, γ = 2α.

Thus,

A = α





1 −2 2
−2 4 −4
2 −4 4



 .

Now the condition A
[

3 2 1
]⊤

=
[

1 −2 2
]⊤

yields α = 1.

Solution 2. Since A is symmetric it is orthogonally diagonalizable. Since the rank of A is 1, A has one
nonzero eigenvalue of multiplicity 1. The eigenspace corresponding to the nonzero eigenvalue is the column

space of A. Therefore
[

1 −2 2
]⊤

is an eigenvector of A corresponding to the nonzero eigenvalue. The

orthogonal complement of
[

1 −2 2
]⊤

is the eigenspace corresponding to the eigenvalue 0. Since





1
−2
2





⊥

= Span











−2
1
2



 ,





2
2
1











,

the orthogonal diagonalization of A is

A =





1
3 −2

3
2
3

−2
3

1
3

2
3

2
3

2
3

1
3









λ 0 0
0 0 0
0 0 0









1
3 −2

3
2
3

−2
3

1
3

2
3

2
3

2
3

1
3



 = λ





1
3
−2

3
2
3





[

1

3
− 2

3

2

3

]

Now we use the condition A
[

3 2 1
]⊤

=
[

1 −2 2
]⊤

to calculate λ:





1
−2
2



 = λ





1
3
−2

3
2
3





[

1

3
− 2

3

2

3

]





3
2
1



 =
λ

3





1
3

−2
3

2
3



 .

Thus λ = 9. So,

A = 9





1
3
−2

3
2
3





[

1

3
− 2

3

2

3

]

=





1
−2
2



 [1 −2 2] =







1 −2 2

−2 4 −4

2 −4 4






.

OVER
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Problem 10. Find the general solution of the system dx
dt = −2x+ 4y2, dy

dt = 3y.

Solution. Since the second equation does not contain the unknown function x, we solve it first. The general
solution of dy

dt = 3y is
y(t) = Be3t.

where B is an arbitrary constant. Now the first equation becomes

x′(t) = −2x(t) + 4B2e6t.

This is a first-order nonhoogeneous equation which we solve by using an integrating factor e2t:

x′(t)e2t + 2x(t)e2t = 4B2e8t.

The last equation can be rewritten as

d

dt

(

x(t)e2t
)

= 4B2e8t,

which is solved by indefinite integration

x(t)e2t =
1

2
B2e8t +A,

where A is an arbitrary constant. Thus, the general solution of the given system is

x(t) = Ae−2t +
1

2
B2e6t, y(t) = Be3t.

THE END OF THE EXAM


