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Graduate Qualifying Exam – Spring 2023

Directions: In all problems you must show your work in order to receive credit. You may not use
a calculator. All electronic devices must be turned off. You have three hours.

Problem 1. Let fa(x, y) = 4x2 + axy + 3y2 − 17 and consider the region

Va := {(x, y, z) : z ≤ fa(x, y)}.
(a) Determine a vector (in terms of a) that is normal to Va at (2, 1, 2a + 2). The vector you find

should be pointing out of Va.
(b) Determine all values of a such that the normal vector at (2, 1, 2a+2) you found forms an obtuse

angle with the vector (a,−a, 1)T .

Solution. The gradient of fa is given as (8x + ay, 6y + ax)T . We’re looking for an upward
normal to the surface z − fa(x, y) = 0. At the given point, normal vectors are scalar multiples of
(−16− a,−6− 2a, 1)T .

An obtuse angle will be formed if the dot product of (−16 − a,−6 − 2a, 1) with (a,−a, 1)T is
negative. So we need a to satisfy 0 > −16a − a2 + 6a + 2a2 + 1 = a2 − 10a + 1. The dot product

is zero when a = 10±
√
96

2
. Between these values, a2 − 10a + 1 is negative by checking any number

between the two roots.

Problem 2. Let V denote the vector space of 2 × 2 matrices over R. Fix A ∈ V and define
T : V → V to be the function T (B) = AB −BA.

(a) Prove that T is a linear transformation.
(b) Prove that rankT ≤ 2.

(c) Let A =

(
1 0
0 2

)
. Find the eigenvalues of T , and a basis of V consisting of eigenvectors of T .

Solution. To prove that T is linear, let c1, c2 ∈ R and let B1, B2 ∈ V and consider

T (c1B1 + c2B2) = A(c1B1 + c2B2)− (c1B1 + c2B2)A

= c1AB1 + c2AB2 − c1B1A− c2B2A

= c1(AB1 −B1A) + c2(AB2 −B2A)

= c1T (B1) + c2T (B2).

Next, to show rankT ≤ 2, it suffices, since dimV = 4, to prove that nullity T ≥ 2. To this
end, since A commutes with itself and I, we have I, A ∈ NulT . Either {I, A} is dependent or
independent. If it is dependent, then A = cI for some c ∈ R so every matrix in V commutes with
A so that NulT has dimension four. Otherwise, dim NulT ≥ 2 as desired.

Finally, we compute the matrix of T with respect to the basis

{(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)}
.

It is 
0 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 0

 .
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Thus, the eigenvalues of T are 0, 1,−1 and a basis of eigenvectors is the standard basis of V given
above.

Problem 3. An aspen’s height in meters at time t is given by the function h(t). The height
function satisfies h′′(t) = 22.5 − 5h′(t) − 2.25h(t) and a particular tree is estimated as growing at
an annual rate of 0.5 meters when it is 1 meters tall. Find this tree’s height as a function of t.
Solution. The characteristic polynomial of the homogeneous equation is r2 + 5r + 2.25 which has
roots −4.5,−0.5. Thus, the homogeneous equation has general solution h1(t) = C1e

−4.5t +C2e
−0.5t.

We guess a particular solution for the nonhomogeneous equation as being a constant function
h2(t) = A; the only such A must be 10 in order to satisfy the nonhomogeneous equation. Our general
solution is h(t) = 10+C1e

−4.5t+C2e
−0.5t. If we set h(0) = 1 and h′(0) = 0.5, we get that−9 = C1+C2

and 0.5 = −4.5C1 − 0.5C2. This means C1 = 1, C2 = −10, giving h(t) = 10 + e−4.5t − 10e−0.5t.

Problem 4. Let V be region in R3 enclosed by the surface z = x+ y and the planes {x = 0}, {x =
2}, {y = 0}, {y = 2}. The air temperature at any point in R3 is given by T (x, y, z) = x + zxy.

(a) Determine the volume of V .
(b) Find the average air temperature in V .

Solution. We compute |V | =
∫ 2

0

∫ 2

0

∫ 2

0

∫ x+y

0
dxdydz =

∫ 2

0

∫ 2

0
(x + y)dxdy = 8.

The average temperature is given by 1
|V |

∫ 2

0

∫ 2

0

∫ 2

0
[x + zxy]dxdydz. Iterating through this gives

1

|V |

∫ 2

0

∫ 2

0

∫ x+2y

0

[x + zxy]dxdydz = 1
8

∫ 2

0

∫ 2

0
[x(x + y) + xy(x+y)2

2
]dxdy

= 1
8

∫ 2

0
[x3 + 14

3
x2 + 4x]dx

= 220
72

Problem 5. Let V be a finite-dimensional vector space over R and let L : V → V denote a linear
transformation. let x ∈ V be a nonzero vector and let

W = Span{x, L(x), L2(x), . . .}.

(a) Prove that there is a minimum j ∈ Z such that {x, L(x), . . . , Lj(x)} is dependent, and deduce
from this that Lj(x) ∈ Span{x, L(x), . . . , Lj−1(x)}.

(b) Prove that {x, L(x), . . . , Lj−1(x)} is a basis for W .
(c) Suppose V = R3 and let A denote the matrix of L with respect to the standard basis for R3.

Suppose that rankA = 1 and x is not in either the column space of A or the null space of A.
Compute dimW .

Solution. Since V is finite-dimensional of dimension d, V contains no independent subsets of size
> d. In particular, {x, L(x), . . . , Ld(x)} is linearly dependent, so there is a minimum j such that
{x, L(x), . . . , Lj(x)} is dependent. Thus, since {x, L(x), . . . , Lj−1(x)} is independent, there is a
dependence relation

b0x + b1L(x) + · · ·+ bj−1L
j−1(x) + bjL

j(x) = 0

with bj 6= 0. In particular, we may write Lj(x) as a linear combination of x, L(x), . . . , Lj−1(x).
For the second part, we note that the set of vectors is independent by definition of j, so we

need only show it spans W . To do this, it suffices to show that for each m ∈ N, Lj−1+m(x) is in
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Span{x, L(x), . . . , Lj−1(x)}. We prove this by induction on m. By the first part of the problem,
the result holds when m = 1. For the general case,

Lj−1+m+1(x) = L(Lj−1+m(x))

= L(

j−1∑
i=0

ciL
i(x))

=

j−1∑
i=0

ciL
i+1(x)

so that the result follows from the first part of the problem.
For the last part, since x is not in the column space or the null space of A, {x, L(x)} is linearly

independent and {L(x)} is a basis for the column space of A since the rankA = 1. it follows that
since Lj(x) is in the column space of A for all j ≥ 1, dimW = 2.

Problem 6. Two vertices of a trapezoid are at (−2, 0) and (2, 0), and the other two lie on the
semicircle x2 + y2 = 4, y ≥ 0. What is the maximum possible area of the trapezoid? (Recall that
the area of a trapezoid with bases b1 and b2 and height h is h(b1 + b2)/2).
Solution. We write the area, A(x) of the trapezoid as a function of x: The location of the two
base vertices allows us to set b1 = 4, and since the other base must be parallel and is constrained
to the given semicircle, the coordinates of the other vertices are of the form (−x, h) and (x, h). By
the given constraint, h =

√
4− x2. Thus, the area is

A(x) =
1

2

√
4− x2(2x + 4).

We optimize this function on [0, 2], but note that neither endpoint will give a valid configuration.

We find A′(x) = −x(x+2)√
4−x2 +

√
4− x2. Setting this equal to zero yields −x(x + 2) + 4− x2 = 0 which

implies that x2+x−2 = 0. Thus, the only critical point in (0, 2) is x = 1. We find that A(1) = 3
√

3.

Problem 7. The Lanczos derivative of a function f(x) at a point a is defined as

f
′

L(a) := lim
h7→0+

3

2h3

∫ h

−h
tf(a + t)dt

provided the limit exists.

(a) Let a ∈ R. Compute f
′
L(a) when f(x) = x and when f(x) = x2.

(b) Compute f
′
L(0) when f(x) = |x|. How does this compare to f

′
(0)?

(c) Does the mean value theorem hold for f(x) = |x| on the interval [−1, 3] if the usual derivative
is replaced by the Lanczos derivative?

Solution. First, let f(x) = x. Then

f
′

L(a) = lim
h7→0+

3

2h3

∫ h

−h
t(a + t)dt

= lim
h7→0+

3

2h3

(
at2

2
+

t3

3

)∣∣∣h
−h

= lim
h7→0+

3

2h3

2h3

3
= 1
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Similarly, one shows that if f(x) = x2, f
′
L(a) = 2a.

Next, suppose f(x) = |x|. Then

f
′

L(0) = lim
h7→0+

3

2h3

∫ h

−h
t|t|dt

= lim
h7→0+

3

2h3

(∫ h

0

t2dt +

∫ 0

−h
−t2dt

)
= lim

h7→0+

3

2h3

(
t3

3

∣∣∣h
0

+−t3

3

∣∣∣0
−h

)
= 0

In contrast, the ordinary derivative of f(x) at 0 does not exist.

The mean value theorem does not hold since f(3)−f(−1)
4

= 1
2
, while, by parts (a) and (b), f

′
L(c)

can only equal either 1,−1 or 0.

Problem 8. Do the following series converge or diverge? Completely justify your answer.

(a)
∞∑
n=1

(
√
n + 1−

√
n).

(b)
∞∑
n=1

(n
√
n− 1)n.

Solution. We show the first series diverges. For, since

√
n + 1−

√
n = (

√
n + 1−

√
n)

√
n + 1 +

√
n√

n + 1 +
√
n

=
1√

n + 1 +
√
n

and 1√
n+1+

√
n
≥ 1

2
√
n+1

for n ≥ 1, then by the comparison test, it suffices to show that
∑∞

n=1
1√
n

diverges. This follows from the p-series test with p = 1/2.
Now we show that the second series converges. Since, for n ≥ 2, n

√
n > 1, it suffices, by the root

test, to show
lim
n→∞

(n
√
n− 1) < 1.

For this, it suffices to show that limn→∞
n
√
n = 1. To this end, we note that

ln( lim
n→∞

n
√
n) = lim

n→∞
ln(n
√
n) = lim

n→∞

lnn

n

by continuity of ln(x). The last expression is equal to 0 by L’Hopital. Thus, since ln(limn→∞
n
√
n) =

0, limn→∞
n
√
n = 1 as desired.

Problem 9. Let F (x, y) =
∫ x

0
e−5t−3ydt−

∫ y

x/2
e−3tdt.

(a) Find a linear approximation of F at (0, 1/3).
(b) Identify the points on the unit circle where this linear approximation is maximized and where

it is minimized. It is not necessary to obtain a simplified expression for these points and you
do not have to specify which is the maximizer or minimizer.
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Solution. The fundamental theorem of calculus lets us compute the gradient of F as ∇F =(
e−5x−3y + e−3x/2/2

−3e−3y

5
[1− e−5x]− e−3y

)
. Thus, the linear approximation is F (0, 1/3)+∇F (0, 1/3)T (x, y−1/3)T =

1
3
[1 − e−1] + (e−1 + 1/2,−e−1) · (x, y − 1/3). To find the maximizer or minimizer, the Lagrange

multiplier rule states that we just need a point on 1 − x2 − y2 = 0 where ∇F (0, 1/3) is parallel
to the gradient of 1 − x2 − y2. Since the latter is just (−2x,−2y)T , we need unit vectors that are

multiples of ∇F (0, 1/3). That means the points are ± (e−1+1/2,−e−1)√
(e−1+1/2)2+e−2

.

Problem 10. Let f(x) = x
−x
x−1 be defined on (0, 1).

(a) Use ln z ≤ z − 1 to show f(x) ≥ e−1 on (0, 1).
(b) Compute limx→1− f(x).

Solution. We can rewrite f as e
−x
x−1

ln(x). The inequality implies that ln 1/x ≤ 1
x
− 1 = 1−x

x
. Then

− lnx ≤ 1−x
x

, which gives the lower bound we want. For the second part, we can use the inequality
again to get that lnx ≤ x − 1; since x < 1, we get that ln(x)/(x − 1) ≥ 1, so f(x) ≤ e−x. By the
squeeze theorem, the limit is e−1.


