Graduate Qualifying Exam - Spring 2023

Directions: In all problems you must show your work in order to receive credit. You may not use a calculator. All electronic devices must be turned off. You have three hours.

Problem 1. Let $f_{a}(x, y)=4 x^{2}+a x y+3 y^{2}-17$ and consider the region

$$
V_{a}:=\left\{(x, y, z): z \leq f_{a}(x, y)\right\}
$$

(a) Determine a vector (in terms of a) that is normal to V_{a} at $(2,1,2 a+2)$. The vector you find should be pointing out of V_{a}.
(b) Determine all values of a such that the normal vector at ($2,1,2 a+2$) you found forms an obtuse angle with the vector $(a,-a, 1)^{T}$.

Problem 2. Let V denote the vector space of 2×2 matrices over \mathbb{R}. Fix $A \in V$ and define $T: V \rightarrow V$ to be the function $T(B)=A B-B A$.
(a) Prove that T is a linear transformation.
(b) Prove that $\operatorname{rank} T \leq 2$.
(c) Let $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$. Find the eigenvalues of T, and a basis of V consisting of eigenvectors of T.

Problem 3. An aspen's height in meters at time t is given by the function $h(t)$. The height function satisfies $h^{\prime \prime}(t)=22.5-5 h^{\prime}(t)-2.25 h(t)$ and a particular tree is estimated as growing at an annual rate of 0.5 meters when it is 1 meters tall. Find this tree's height as a function of t.

Problem 4. Let V be region in \mathbb{R}^{3} enclosed by the surface $z=x+y$ and the planes $\{x=$ $0\},\{x=2\},\{z=0\},\{y=0\},\{y=2\}$. The air temperature at any point in \mathbb{R}^{3} is given by $T(x, y, z)=x+z x y$.
(a) Determine the volume of V.
(b) Find the average air temperature in V.

Problem 5. Let V be a finite-dimensional vector space over \mathbb{R} and let $L: V \rightarrow V$ denote a linear transformation. let $x \in V$ be a nonzero vector and let

$$
W=\operatorname{Span}\left\{x, L(x), L^{2}(x), \ldots\right\}
$$

(a) Prove that there is a minimum $j \in \mathbb{Z}$ such that $\left\{x, L(x), \ldots, L^{j}(x)\right\}$ is dependent, and deduce from this that $L^{j}(x) \in \operatorname{Span}\left\{x, L(x), \ldots, L^{j-1}(x)\right\}$.
(b) Prove that $\left\{x, L(x), \ldots, L^{j-1}(x)\right\}$ is a basis for W.
(c) Suppose $V=\mathbb{R}^{3}$ and let A denote the matrix of L with respect to the standard basis for \mathbb{R}^{3}. Suppose that $\operatorname{rank} A=1$ and x is not in either the column space of A or the null space of A. Compute $\operatorname{dim} W$.

Problem 6. Two vertices of a trapezoid are at $(-2,0)$ and $(2,0)$, and the other two lie on the semicircle $x^{2}+y^{2}=4, y \geq 0$. What is the maximum possible area of the trapezoid? (Recall that the area of a trapezoid with bases b_{1} and b_{2} and height h is $\left.h\left(b_{1}+b_{2}\right) / 2\right)$.

Problem 7. The Lanczos derivative of a function $f(x)$ at a point a is defined as

$$
f_{L}^{\prime}(a):=\lim _{h \mapsto 0^{+}} \frac{3}{2 h^{3}} \int_{-h}^{h} t f(a+t) d t
$$

provided the limit exists.
(a) Let $a \in \mathbb{R}$. Compute $f_{L}^{\prime}(a)$ when $f(x)=x$ and when $f(x)=x^{2}$.
(b) Compute $f_{L}^{\prime}(0)$ when $f(x)=|x|$. How does this compare to $f^{\prime}(0)$?
(c) Does the mean value theorem hold for $f(x)=|x|$ on the interval $[-1,3]$ if the usual derivative is replaced by the Lanczos derivative?

Problem 8. Do the following series converge or diverge? Completely justify your answer.
(a)

$$
\sum_{n=1}^{\infty}(\sqrt{n+1}-\sqrt{n}) .
$$

(b)

$$
\sum_{n=1}^{\infty}\left({ }^{n} \sqrt{n}-1\right)^{n} .
$$

Problem 9. Let $F(x, y)=\int_{0}^{x} e^{-5 t-3 y} d t-\int_{x / 2}^{y} e^{-3 t} d t$.
(a) Find a linear approximation of F at $(0,1 / 3)$.
(b) Identify the points on the unit circle where this linear approximation is maximized and where it is minimized. It is not necessary to obtain a simplified expression for these points and you do not have to specify which is the maximizer or minimizer.

Problem 10. Let $f(x)=x^{\frac{-x}{x-1}}$ be defined on $(0,1)$.
(a) Use $\log z \leq z-1$ to show $f(x) \geq e^{-1}$ on $(0,1)$.
(b) Compute $\lim _{x \rightarrow 1^{-}} f(x)$.

