Fall 2022 Graduate Qualifying Exam Solutions

1. Let

$$
f(x)= \begin{cases}\frac{x^{3}-x^{2}}{x-1} & \text { if } x \neq 1 \\ 0 & \text { if } x=1\end{cases}
$$

(a) Does $\lim _{x \rightarrow 1} f(x)$ exist? Either state and prove the limit using an epsilon-delta argument, or formally justify why it does not exist.
(b) Is $f(x)$ differentiable at $x=1$? Justify your answer using the definition of the derivative.
[Solution] For (a), we'll show that $\lim _{x \rightarrow 1} f(x)=1$. Let $\epsilon>0$ and choose $\delta=\min \left\{1, \frac{\epsilon}{3}\right\}$. Then for all x with $0<|x-1|<\delta$, we have $|x+1|<3$, so

$$
\left|\frac{x^{3}-x^{2}}{x-1}-1\right|=\left|x^{2}-1\right|=|x+1||x-1|<\epsilon
$$

For (b), we have

$$
\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1} \frac{x^{2}}{x-1}=\infty
$$

Since the limit is not finite, $f^{\prime}(1)$ does not exist.
2. Let

$$
f(x, y)=\int_{x}^{\sqrt{y+\frac{\pi}{4}}} \cos \left(t^{2}\right) d t
$$

Estimate the change in $f(x, y)$ from $(0,0)$ to $(0.1,0.04)$ using the linear approximation at $(0,0)$.
[Solution] $\nabla f(0,0)=\left(f_{x}(0,0), f_{y}(0,0)\right)=\left(-\cos 0, \frac{\cos \frac{\pi}{4}}{2 \sqrt{\frac{\pi}{4}}}\right)=\left(-1, \frac{1}{\sqrt{2 \pi}}\right)$. Then

$$
f(0.1,0.04)-f(0,0) \approx-\Delta x+\frac{1}{\sqrt{2 \pi}} \Delta y=-0.1+\frac{1}{\sqrt{2 \pi}}(0.04)
$$

3. Suppose that the linear system $A \mathbf{x}=\left[\begin{array}{l}2 \\ 4 \\ 2\end{array}\right]$ has the general solution

$$
\mathbf{x}=\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]+c\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+d\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \quad \text { with free variables } c, d
$$

(a) Find a basis for the null space of A.
(b) Find a basis for the column space of A.
(c) Determine the matrix A.
[Solution] (a) $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ form a basis for $\operatorname{Nul} A$.
(b) Since A is 3×3 and $\operatorname{dim}(\operatorname{Nul} A)=2, \operatorname{dim}(\operatorname{Col} A)=1$, so $\left[\begin{array}{l}2 \\ 4 \\ 2\end{array}\right]$ is a basis for $\operatorname{Col} A$.
(c) $A=\left[\begin{array}{lll}1 & -1 & 0 \\ 2 & -2 & 0 \\ 1 & -1 & 0\end{array}\right]$ since $A\left[\begin{array}{lll}2 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}2 & 0 & 0 \\ 4 & 0 & 0 \\ 2 & 0 & 0\end{array}\right]$.
4. A swing consists of a board at the end of a 10 foot long rope that is attached to a tree branch at the other end. Suppose that the swing is directly below the point of attachment at time $t=0$, and is being pushed by someone who walks at 6 feet per second in the horizontal direction.
(a) How fast is the swing rising after 1 second?
(b) What is the angular speed of the rope in radians per second after 1 second?
[Solution] Let $(0,0)$ be the position of the swing at $t=0$ and (x, y) its position at time t. We have the diagram below, and are given that $\frac{d x}{d t}=6 \mathrm{ft} / \mathrm{sec}$.

For (a), we want $\frac{d y}{d t}$. We implicitly differentiate $x^{2}+(10-y)^{2}=100$ to get $2 x \frac{d x}{d t}-$ $2(10-y) \frac{d y}{d t}=0$. At $t=1, x=6$ and $y=2$, so $\frac{d x}{d t}=\frac{9}{2} \mathrm{ft} / \mathrm{sec}$.

For (b), we have $\sin \theta=\frac{x}{10}$ so $\cos \theta \frac{d \theta}{d t}=\frac{1}{10} \frac{d x}{d t}$. At $t=1, \cos \theta=\frac{4}{5}$ hence $\frac{d \theta}{d t}=\frac{3}{4}$ radians per second.
5. Let $T: V \rightarrow V$ be a linear transformation such that $T \circ T=T$.
(a) Give an example of such a function with $V=\mathbb{R}^{2}$ such that T is neither the zero map nor the identity map.
(b) Show that $\{\mathbf{v}, T(\mathbf{v})\}$ is linearly dependent if and only if $T(\mathbf{v})=\mathbf{v}$ or $T(\mathbf{v})=\mathbf{0}$.
[Solution] (a) T is represented by a 2×2 matrix A with $A^{2}=A$. One such matrix is $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$, which corresponds geometrically to projection onto the horizontal axis.
(b) If the set is either $(\mathbf{v}, \mathbf{0})$ or (\mathbf{v}, \mathbf{v}) it is clearly dependent. Conversely, let $\{\mathbf{v}, T(\mathbf{v})\}$ be linearly dependent. Then $a \mathbf{v}+b T(\mathbf{v})=\mathbf{0}$ for scalars a and b not both zero. Applying T to the equation, we get $(a+b) T(\mathbf{v})=\mathbf{0}$, so either $T(\mathbf{v})=\mathbf{0}$, or $a+b=0$. In the second case, $b=-a$ with $a \neq 0$ so $a \mathbf{v}=a T(\mathbf{v})$ and hence $T(\mathbf{v})=\mathbf{v}$.
6. What fraction of the volume of a sphere is contained between two parallel planes that trisect the diameter to which they are perpendicular?
[Solution] Without loss of generality, consider the unit sphere centered at the origin. Let V be the volume of the sphere and let V_{1} be the volume of the upper removed section.

$$
\begin{aligned}
\frac{V-2 V_{1}}{V} & =1-\frac{2 \int_{0}^{2 \pi} \int_{0}^{2 \sqrt{2} / 3} \int_{1 / 3}^{\sqrt{1-r^{2}}} r d z d r d \theta}{4 \pi / 3} \\
& =1-\frac{1}{3}\left[-\frac{1}{3}\left(1-r^{2}\right)^{3 / 2}-\frac{1}{6} r^{2}\right]_{0}^{2 \sqrt{2} / 3} \\
& =\frac{13}{27}
\end{aligned}
$$

7. Determine whether each series below is absolutely convergent, conditionally convergent, or divergent. Explain your reasoning by citing appropriate tests.
(a) $\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{(n+1)!}$
(b) $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n \ln n}$
[Solution] (a) This series converges absolutely by the ratio test. (b) $f(x)=\frac{1}{x \ln x}$ is continuous and positive on $[2, \infty)$. Since $f^{\prime}(x)=\frac{-1-\ln x}{(x \ln x)^{2}}<0, f$ is decreasing on $[2, \infty)$, and $\int_{2}^{\infty} f(x) d x$ diverges, so by the integral test, the series does not converge absolutely. Since $\frac{1}{n \ln n} \rightarrow 0$ as $n \rightarrow \infty$, and the terms are decreasing, then the series is conditionally convergent by the alternating series test.
8. Find the general solution to the partially decoupled linear system

$$
\frac{d x}{d t}=x, \quad \frac{d y}{d t}=x+y-2 .
$$

[Solution] Solve the 1st equation for the general solution, $x(t)=k_{1} e^{t}$. Then the 2 nd equation becomes $\frac{d y}{d t}=y+k_{1} e^{t}-2$, which can be solved using extended linearity principle.

Guess a particular solution $y_{p 1}(t)=\alpha t e^{t}$ to $\frac{d y}{d t}=y+k_{1} e^{t}$, plugging in and determine $\alpha=k_{1}$. In addition, $y_{p 2}(t)=2$ is a particular solution to $\frac{d y}{d t}=y-2$. Therefore, $y_{p 1}(t)+y_{p 2}(t)=k_{1} t e^{t}+2$ is a particular solution to $\frac{d y}{d t}=y+k_{1} e^{t}-2$.

Since $y_{h}(t)=e^{t}$, by the extended linearity principle, the general solution to the 2nd equation is

$$
y(t)=k_{2} e^{t}+k_{1} e^{2 t}-1
$$

Therefore, the general solution to the nonlinear system is

$$
(x(t), y(t))=\left(k_{1} e^{2 t}, k_{2} e^{t}+k_{1} t e^{t}+2\right) .
$$

9. Let S be the graph of $f(x, y)=\frac{1}{x y}$ and Π be the tangent plane of S through the point $(-1,-1,1)$. A particle P at the point $(1 / 2,1,2)$ on S, following the surface normal direction there, heads toward Π along a straight path. If θ is the acute angle between the particle's path and Π, find $\sin \theta$.
[Solution] Take $\mathbf{n}_{\mathbf{1}}=\langle 4,2,1\rangle$ as the normal at $(1 / 2,1,2)$ and $\mathbf{n}_{\mathbf{2}}=\langle 1,1,-1\rangle$ the normal of Π, so

$$
\sin \theta=\frac{\mathbf{n}_{\mathbf{1}} \cdot \mathbf{n}_{\mathbf{2}}}{\left\|\mathbf{n}_{\mathbf{1}}\right\|\left\|\mathbf{n}_{\mathbf{2}}\right\|}=\frac{5}{\sqrt{63}}
$$

10. An open rectangular box (a box without a top) of volume $80 \mathrm{~cm}^{3}$ is to be constructed from material that costs $\$ 5 / \mathrm{cm}^{2}$ for the bottom and $\$ 2 / \mathrm{cm}^{2}$ for its sides. What dimensions should the box have in order to minimize the total cost?
[Solution] Assume the optimal dimensions are $l \times w \times h$.

$$
\begin{gathered}
\min \quad C(l, w, h)=5 l w+2 \cdot 2(l h+h w) \\
\text { subject to } \quad V(l, w, h)=l w h=80
\end{gathered}
$$

By method of Lagrange multipliers,

$$
\nabla C=\lambda \nabla V \quad \Rightarrow \quad 5 w+4 h=\lambda \cdot w h, \quad 5 l+4 h=\lambda \cdot l h, \quad 4(l+w)=\lambda \cdot l w
$$

Dividing the first two equations yields

$$
\frac{5 w+4 h}{5 l+4 h}=\frac{w}{l} \quad \Rightarrow \quad w=l .
$$

Dividing the 2nd and 3rd equations yields

$$
\frac{5 l+4 h}{4(l+w)}=\frac{h}{w} \quad \Rightarrow \quad w=\frac{4}{5} h .
$$

Plugging in the constraint,

$$
V(l, w, h)=l w h=\frac{4}{5} h \cdot \frac{4}{5} h \cdot h=80 \quad \Rightarrow \quad h=5 \quad \Rightarrow \quad l=w=\frac{4}{5} h=4 .
$$

So the optimal dimensions are $4 \times 4 \times 5$.

