Number: __________________________

1. Find the value of a for which the integral

$$\int_{1}^{\infty} \frac{a}{x(2x + a)} \, dx$$

converges to the value of 1.

2. a. Show, by an example, that linear dependence of the columns of a matrix does not imply the linear dependence of the rows. (Note: you need to briefly indicate why the columns of your matrix are linearly dependent and the rows are not. A proof is not needed.)

b. State the rank-nullity theorem, a.k.a. the dimension theorem, for matrices.

c. Show that, if an $n \times n$ matrix A is such that $A^2 = A$, then $\text{rank}(A) + \text{rank}(I - A) = n$.

3. Find the real-valued function $y : \mathbb{R} \to \mathbb{R}$ which satisfies

$$2y'' - y' - 6y = 0,$$

$$y(0) = 1,$$

$$y'(0) = 0.$$

4. Let M denote the $n \times n$ matrix

$$\begin{bmatrix}
1 & 1 & \ldots & 1 \\
\vdots & \vdots & & \vdots \\
1 & 1 & \ldots & 1
\end{bmatrix}.$$

Note that $M^2 = nM$.

a. What are the possible eigenvalues of $aI_n + bM$? Here a and b are scalars and I_n is the identity $n \times n$ matrix.

b. Let A be the 4×4 matrix

$$A = \begin{bmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{bmatrix}.$$

Let k be an integer greater than 1. Find A^k. Note: You may express your answer in the form of the product B^xHC^y, where B, H, C are nontrivial matrices whose elements must be specified.
5. Let \(f_n(x) \) be defined recursively as \(f_n(x) = 1 - \int_0^x s[f_{n-1}(s)]ds \) with \(f_0(x) = 1 \).

a. Determine \(f_1(x), f_2(x), f_3(x), f_4(x) \).

b. What is the coefficient of the highest order term in \(f_n \)?

c. Show that for each \(x \in \mathbb{R} \), \(\lim_{n \to \infty} f_n(x) \) exists.

6. A curve is given by the parametric equations

 \[
 x = a \cos^3 t, \quad y = a \sin^3 t, \quad 0 < t < \frac{\pi}{2},
 \]

 a. Show that, near \(t = 0 \), the equations can be approximated by

 \[
 a - x \approx 3at^2/2, \quad y \approx at^3.
 \]

 b. Find the length of the curve. Note: A useful identity is \(\sin 2\theta = 2 \sin \theta \cos \theta \).

7. A company is looking to invest in two assets. If \(w_1 \) and \(w_2 \) are the amounts of the investment budget invested in each asset, then the variance of the total investments is given by

 \[
 \frac{1}{4} w_1^2 + \frac{1}{9} w_2^2 + \frac{1}{3} \rho w_1 w_2
 \]

 where \(\rho \in [-1, 1] \) is a known fixed number. The expected return of this investment is given by the expression

 \[
 8w_1 + 4w_2
 \]

 What is the best choice of \(w_1 \) and \(w_2 \)—in terms of \(\rho \)—to minimize the variance while ensuring an expected return of 24?

8. a. Prove that \(\sum_{n=1}^{\infty} a_n \) converges absolutely if \(\lim_{n \to \infty} n^\alpha a_n = A \) for some \(\alpha > 1 \), where \(A \) is some real number.

 b. For each of the following, determine whether the series converges or diverges and provide the justification of your answer.

 \(\text{(ii) } \sum_{n=1}^{\infty} \sin \left(\frac{\pi}{n^2} \right) \)
 \(\text{(ii) } \sum_{n=1}^{\infty} \frac{(n+1)!}{n^n} \).

9. A solid cone of uniform density \(\rho \), height \(H \) and base radius \(R \) rotates at constant angular velocity \(\omega \) about its axis. Find the kinetic energy of the cone. Note: The kinetic energy of a particle of mass \(m \) moving at speed \(v \) is given by \(E = \frac{1}{2}mv^2 \).
10. Given a position x, y, the elevation in a portion of a canyon floor is given by

$$f(x, y) = (1 - x)^2 + 2(y - x^2)^2$$

We drive a vertical post into the ground at $P_1 = (0, 0)$, $P_2 = (1, 0)$ and at $P_3 = (1, 1)$. The portion of each post not buried in the ground is length 1. A (not necessarily level) platform is attached to the top of these three posts. If we put a fourth post at P_2 which is normal to the canyon floor, what is the exact angle between this fourth post and the upward normal of the platform?