> Calculators are allowed but you must give exact values, not approximate answers.
You must clearly justify all answers.
Problems are of equal weight.

Number:

1. Find the value of a for which the integral

$$
\int_{1}^{\infty} \frac{a}{x(2 x+a)} d x
$$

converges to the value of 1 .
2. a. Show, by an example, that linear dependence of the columns of a matrix does not imply the linear dependence of the rows. (Note: you need to briefly indicate why the columns of your matrix are linearly dependent and the rows are not. A proof is not needed.)
b. State the rank-nullity theorem, a.k.a. the dimension theorem, for matrices.
c. Show that, if an $n \times n$ matrix A is such that $A^{2}=A$, then $\operatorname{rank}(A)+\operatorname{rank}(I-A)=n$.
3. Find the real-valued function function $y: \mathbb{R} \rightarrow \mathbb{R}$ which satisfies

$$
\begin{array}{r}
2 y^{\prime \prime}-y^{\prime}-6 y=0, \\
y(0)=1, \\
y^{\prime}(0)=0 .
\end{array}
$$

4. Let M denote the $n \times n$ matrix

$$
\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
\vdots & \vdots & & \vdots \\
1 & 1 & \ldots & 1
\end{array}\right]
$$

Note that $M^{2}=n M$.
a. What are the possible eigenvalues of $a I_{n}+b M$? Here a and b are scalars and I_{n} is the identity $n \times n$ matrix.
b. Let A be the 4×4 matrix

$$
A=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right]
$$

Let k be an integer greater than 1 . Find A^{k}. Note: You may express your answer in the form of the product $B^{x} H C^{y}$, where B, H, C are nontrivial matrices whose elements must be specified.
5. Let $f_{n}(x)$ be defined recursively as $f_{n}(x)=1-\int_{0}^{x} s\left[f_{n-1}(s)\right] d s$ with $f_{0}(x)=1$.
a. Determine $f_{1}(x), f_{2}(x), f_{3}(x), f_{4}(x)$.
b. What is the coefficient of the highest order term in f_{n} ?
c. Show that for each $x \in \mathbb{R}, \lim _{n \rightarrow \infty} f_{n}(x)$ exists.
6. A curve is given by the parametric equations

$$
x=a \cos ^{3} t, \quad y=a \sin ^{3} t, \quad 0<t<\frac{\pi}{2} .
$$

a. Show that, near $t=0$, the equations can be approximated by

$$
a-x \approx 3 a t^{2} / 2, \quad y \approx a t^{3}
$$

b. Find the length of the curve. Note: A useful identity is $\sin 2 \theta=2 \sin \theta \cos \theta$.
7. A company is looking to invest in two assets. If w_{1} and w_{2} are the amounts of the investment budget invested in each asset, then the variance of the total investments is given by

$$
\frac{1}{4} w_{1}^{2}+\frac{1}{9} w_{2}^{2}+\frac{1}{3} \rho w_{1} w_{2}
$$

where $\rho \in[-1,1]$ is a known fixed number. The expected return of this investment is given by the expression

$$
8 w_{1}+4 w_{2}
$$

What is the best choice of w_{1} and w_{2}-in terms of ρ - to minimize the variance while ensuring an expected return of 24 ?
8. a. Prove that $\sum_{n=1}^{\infty} a_{n}$ converges absolutely if $\lim _{n \rightarrow \infty} n^{\alpha} a_{n}=A$ for some $\alpha>1$, where A is some real number.
b. For each of the following, determine whether the series converges or diverges and provide the justification of your answer.
(ii) $\sum_{n=1}^{\infty} \sin \left(\frac{\pi}{n^{2}}\right)$
(ii) $\sum_{n=1}^{\infty} \frac{(n+1)!}{n^{n}}$.
9. A solid cone of uniform density ρ, height H and base radius R rotates at constant angular velocity ω about its axis. Find the kinetic energy of the cone. Note: The kinetic energy of a particle of mass m moving at speed v is given by $E=\frac{1}{2} m v^{2}$.
10. Given a position x, y, the elevation in a portion of a canyon floor is given by

$$
f(x, y)=(1-x)^{2}+2\left(y-x^{2}\right)^{2}
$$

We drive a vertical post into the ground at $P_{1}=(0,0), P_{2}=(1,0)$ and at $P_{3}=(1,1)$. The portion of each post not buried in the ground is length 1. A (not necessarily level) platform is attached to the top of these three posts. If we put a fourth post at P_{2} which is normal to the canyon floor, what is the exact angle between this fourth post and the upward normal of the platform?

