
WWU Math Graduate Qualifying Exam, Fall 2020 – Solutions

1. Consider an “upside down” cone whose point is at the
“North Pole” ((0, 0, 1)) on the unit sphere, and which
intersects the sphere again at z = −a (0 < a < 1).
See the picture. This cone divides the sphere into two
regions: that above the cone and that below the cone.
Find the value of a so that these two regions have the
same volume.

Solution

(5 pts) Set up a correct integral.

(2.5 pts) Correct evaluation of the integral.

(2.5 pts) Correct determination of a (consistent with previous work).

In cylindrical coordinates, or simply using “washers” parallel to the xy-plane, the volume in
the sphere outside the cone is

π

∫ 1

−a

[
(1− z2)− 1− a2

(1 + a)2
(1− z)2

]
dz = π

[
z − 1

3
z3 +

1− a2

3(1 + a)2
(1− z)3

]z=1

z=−a

= π
[2

3
+ a− a3

3
− (1− a2)(1 + a)

3

]
.

Setting this equal to half the volume of the sphere,
2π

3
, we obtain a2 + 2a − 1 = 0 so

a = −1±
√

2; since a > 0, a = −1 +
√

2.

2. (a) Use calculus to verify that
2

π
θ ≤ sin θ ≤ θ when 0 ≤ θ ≤

π

2
.

(b) For λ < 1, use (a) to prove that

lim
T→∞

T λ
∫ π

2

0

e−T sin θ dθ = 0.

(You may use without further justification facts such as e−x → 0 as x→∞.)

Sketch of solution:

(a) (6 pts) It is true if θ = 0. For 0 < θ ≤
π

2
, it suffices to consider f(θ) =

sin θ

θ
and show

that
2

π
≤ f(θ) ≤ 1. Calculate f ′(θ) =

θ cos θ − sin θ

θ2
:=

g(θ)

θ2
. On (0,

π

2
], g is strictly

decreasing so g(θ) < 0 so f ′ < 0.



(b) (4 pts) By (a), we know e−T sin θ ≤ e−T
2
π
θ. Then, use squeeze theorem to obtain the

answer 0.

3. (a) Explain why the equation xn + xn−1 + · · ·+ x = 1 has only one real root in the interval
(0.5, 1) for positive integer n > 1.

(b) Denote by xn the above root, determine the value of lim
n→∞

xn and explain your answer.

Sketch of solution:

(a) (4 pts) Let f(x) = xn + xn−1 + · · ·+ x− 1, so f(x) is continuous on [0.5, 1] and f(1) > 0
while f(0.5) < 0; also, f ′(x) > 0, so (a) is true.

(b) (6 pts)By
n∑
k=1

xkn = 1 and 0.5 < xn < 1, we know
n∑
k=0

xkn = 2, which implies xn =
1

2
+
xn+1
n

2
.

Also, by
n+1∑
k=1

xkn+1 = 1 and 0.5 < xn+1 < 1, we know
n∑
k=1

xkn+1 < 1, which implies

xn+1 < xn, so lim
n→∞

xn =
1

2
.

4. Given an equilateral triangle T0 with each side of length
L, remove the middle one-third section of each side and
attach a smaller equilateral triangle of side-length L/3
and obtain a star-shaped symmetric hexagon, denoted
by T1; repeat the above process to each of the six small
triangles at each vertex, adding new triangles to the out-
side edges, and get T2, as shown in the picture. Continue
this process to obtain Tn . . . .

(a) Denote by Sn the circumference of Tn and determine
whether lim

n→∞
Sn is finite or not. If finite, find its

value. Justify your conclusion.

(b) Denote by An the area of Tn and determine whether
lim
n→∞

An is finite or not. If finite, find its value. Jus-

tify your conclusion.
Figure: T2

Sketch of solution:

(a) (3 pts) deriving the correct series; (1 pt) conclusion. We find Sn = 3L
(4

3

)n
→∞.

(b) (4 pts) deriving the correct series; (2 pts) computing sum: We find A0 =

√
3

4
L2 and

An = An−1 +
3
√

3L2

16

(4

9

)n
. Thus the total area is

A0 +
3
√

3L2

16

∞∑
n=0

(4

9

)n − 1 =
2
√

3

5
L2.



5. (a) Determine whether the series is convergent or divergent:

∞∑
n=1

sin 1
n

ln (1 + n)
.

(Hint, compare with another series; the integral test may be helpful.)

(b) Let

sn =

∫ π
4

0

tann x dx with n ∈ {1, 2, 3, . . . }.

Evaluate the series
∞∑
n=1

sn + sn+2

n
. (Hint, 1 + tan2 x = sec2 x.)

Sketch of solution:

(a) (3 pts) choosing a test that will work; (2 pts) using the test to get the correct conclusion:

e.g. Divergent; compare with
∞∑
n=1

1

(1 + n) ln (1 + n)
, and the latter is divergent due to

the integral test
∞∫
1

1

(1 + x) ln (1 + x)
dx =∞.

(b) (3.5 pts) computing the relevant integral; (1.5 pts) evaluating the resulting series: sn +

sn+2 can be explicitly evaluated using substitution in the integral to be
1

n(n+ 1)
=

1

n
− 1

n+ 1
; thus the sum is telescoping and equals 1.

6. An n× n symmetric matrix P for which P2 = P is called a projection matrix.

(a) Show that if P is a projection matrix then all its eigenvalues are either 0 or 1.

(b) Let P be an n × n projection matrix which has rank r. Show that exactly r of P’s
eigenvalues are 1 and exactly n− r are 0.

(c) Let ~u ∈ Rn be a unit vector. Define A = ~u~u T .

i. Determine whether or not A is necessarily a projection matrix. Justify your answer.

ii. Find an eigenvalue of A and a corresponding eigenvector, justifying your claim.

Solution

(a) (3 pts) Let λ be an eigenvalue. Then there is ~v 6= ~0 such that P~v = λ~v. Then λ~v =
P~v = P2~v = λ2~v from which λ = 0 or λ = 1 since ~v 6= ~0.

(b) (3 pts) Since P is symmetric, it is diagonalizable and so the dimensions of the eigenspaces
equal the multiplicity of the corresponding eigenvalues. In particular, the dimension of
the null space is n − r by the Rank Theorem, and thus the multiplicity of 0 is n − r,
leaving multiplicity r for the eigenvalue 1.

(c) (i.) (2 pts) A2 = (~u~u T )(~u~u T ) = ~u(~u T~u)~u T = ~u~u T = A since ~u T~u = ‖~u‖ = 1. Thus A is
a projection matrix.



(ii.) (2 pts) Since A~u = ~u~u T~u = ~u‖~u‖ = ~u, we see that ~u is an eigenvector for the
eigenvalue λ = 1. Also, if ~v is any vector orthogonal to ~u, then A~v = ~u~u T~v = ~0
since ~u T = 0, so ~v is an eigenvector for the eigenvalue λ = 0.

7. For a linear transformation A on a vector space V , a subspace W of V is called A-invariant
if AW ⊂ W , i.e., for any vector ~w ∈ W , A~w ∈ W .

(a) Consider a linear transformation on R4 with standard matrix A under the basis {~v1, ~v2, ~v3, ~v4},

A =


1 0 2 −1
0 1 4 −2
2 −1 0 1
2 −1 −1 2

 .
Verify that the subpace W = span

{
~v1 + 2~v2, ~v2 + ~v3 + 2~v4

}
is A-invariant.

(b) Now consider a linear transformation K on Rn under the basis {~u1, ~u2, · · · , ~un},

K =


k 1 0 · · · 0 0
0 k 1 · · · 0 0
...

...
. . . . . .

...
...

0 0 0 · · · k 1
0 0 0 · · · 0 k

 ,

where k is a scalar. Show that:

i. if some K-invariant subspace W contains ~un, then W = Rn;

ii. ~u1 belongs to any non-trivial K-invariant subspace of Rn.

Sketch of solution:

(a) (2 pts) Direct calculation: A(~v1 +2~v2) = (~v1 +2~v2) and A(~v2 +~v3 +2~v4) = (~v2 +~v3 +2~v4).

(b) (i.) (4 pts) Calculate K~un to get ~un−1 + k~un ∈ W , so ~un−1 ∈ W , and so on. . . .

(ii.) (4 pts) For any non-trivial K-invariant subspace W , choose ~u ∈ W and ~u 6= ~0. Let

~u =
l∑

j=1

cj~uj with cl 6= 0 for some integer 1 ≤ l ≤ n. Calculate K~u to obtain that

l∑
j=2

cj~uj−1 ∈ W , and so on. . . .

8. Let E be the ellipsoid given by the equation
x2

4
+ y2 +

z2

9
= 1. Let B be a rectangular box,

centered at the origin with sides parallel to the coordinate axes, of dimensions l×w×h. Find
the dimensions of the box of maximal volume which fits within the ellipsoid E.

Solution

(3 pts) Setting up the correct constrained problem

(4 pts) Deriving the correct equations for Lagrange’s theorem

(3 pts) Solving the equations to obtain the correct dimensions.



We must maximize V = lwh subject to the constraint
l2

16
+
w2

4
+
h2

36
= 1. Setting up the

equations for a Lagrange multiplier we obtain

λ =
8wh

l
=

2lh

w
=

18lw

h
.

Solving for, e.g. l2, and plugging into the constraint, we obtain 3
l2

16
= 1, so l =

4√
3

. From

this, w =
1√
3

and h =
9√
3

.

9. Let E be the ellipsoid x2 + 16y2 + z2 = 16, and P be the plane x − 2y − z = 3, which does
not intersect E. Find the point on E which is closest to P , and the (perpendicular) distance
from p to P . (Hint: at p the tangent plane to E must be parallel to P .)

Solution

(5 pts) Finding the point(s) where the normal vector to the surface is parallel to the normal
vector to the given plane.

(5 pts) Finding the distance from the point on the surface to the plane.

Express E as g(x, y, z) = 0 where g(x, y, z) = x2 + 16y2 + z2 − 16 = 0. The normal vector to
E at a point on E is thus ∇g = (2x, 32y, 2z). Thus we seek (x, y, z) so that (2x, 32y, 2z) =

α(1,−2,−1) for some α and so that x2 + 16y2 + z2 = 16. Thus
α2

4
+
α2

16
+
α2

4
= 16 which

implies α = ±16

3
. With α =

16

3
we obtain the point p+ =

(8

3
,−1

3
,−8

3

)
, and with α = −16

3

we obtain the point p− =
(
−8

3
,
1

3
,
8

3

)
. To find the distance from such a point to the plane P

we compute
∣∣~v · ~n
|~n|
∣∣ where ~n is a normal vector to P and ~v is a vector from p± to a point on

P , say (3, 0, 0). We obtain∣∣∣(8

3
− 3,−1

3
,−8

3

)
· (1,−2,−1)√

6

∣∣∣ =
3√
6
, and

∣∣∣(−8

3
− 3,

1

3
,
8

3

)
· (1,−2,−1)√

6

∣∣∣ =
9√
6
.

Thus the closest point is p+ =
(8

3
,−1

3
,−8

3

)
and the distance is

3√
6

.

10. Consider a fox chasing a rabbit; the fox’s path is F (t) = (x(t), y(t)) with F (0) = (0, 0), and
the rabbit’s path is (1, t). The fox always runs directly toward the rabbit at a speed that is
twice the distance from the fox to the rabbit; that is, at all time t, the velocity vector of
the fox is directly toward the position of the rabbit at that time and its length is twice the
distance from the fox to the rabbit. Use this information to find the path of the fox, F (t).
Does the fox ever catch the rabbit? If so, when? If not, explain.
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Solution

(2 pts) Setting up the pair of ODEs.

(5 pts) Solving the IVPs.

(3 pts) Showing the fox never catches the rabbit.

(x′(t), y′(t)) = c(1−x(t), t−y(t)) for some c (potentially depending on t). Using the fact that
the speed is always twice the distance, we see that c = 2. Thus x′(t) = 2(1− x(t)), x(0) = 0,

and so x(t) = 1−e−2t. And y′(t) = 2(t−y(t)), y(0) = 0, so y(t) = t− 1

2
+

1

2
e−2t. The distance

(squared) between the fox and the rabbit is d2(t) = e−4t +
1

4
(1 − e−2t)2. As t → ∞, d → 1

2
and the fox never catches the rabbit – the closer the fox gets to the rabbit, the slower the fox
runs.


