Calculators are allowed but you must give exact values, not approximate answers. You must clearly justify all answers. Problems are of equal weight.

Number: \_\_\_\_\_

1. Find the value of a for which the integral

$$\int_{1}^{\infty} \frac{a}{x(2x+a)} dx$$

converges to the value of 1.

Solution:  

$$\int_{1}^{\infty} \frac{a}{x(2x+a)} dx = \int_{1}^{\infty} \left(\frac{1}{x} - \frac{2}{2x+a}\right) dx = \ln\left(\frac{x}{2x+a}\right)\Big|_{1}^{\infty}$$

$$= \ln\left(\frac{2+a}{2}\right) \stackrel{set}{=} 1$$
Thus,  $a = 2(e-1)$ .

- 2. a. Show, by an example, that linear dependence of the columns of a matrix does not imply the linear dependence of the rows. (Note: you need to *briefly* indicate why the columns of your matrix are linearly dependent and the rows are not. A proof is not needed.)
  - b. State the rank-nullity theorem, a.k.a. the dimension theorem, for matrices.
  - c. Show that, if an  $n \times n$  matrix A is such that  $A^2 = A$ , then  $\operatorname{rank}(A) + \operatorname{rank}(I A) = n$ .

**Solution:** (a) An example is

$$\left[\begin{array}{rrr}1&0&1\\0&1&1\end{array}\right].$$

It must be a non-square matrix.

(b) The Dimension Theorem: For any  $(m \times n)$  matrix A,

$$rank(A) + nullity(A) = n$$

where nullity(A) is the dimension of the solution space of Ax = 0.

(c) Let  $K = \{x : Ax = 0\}$ , the kernel of A, and  $S = \{(I - A)x : x \in \mathbb{R}^n\}$ , the column space of I - A. If we can show K = S, then dim(K) = dim(S), i.e., nullity(A) = rank(I - A), and so the result follows from the dimension theorem. Let  $x \in K$ . Note that  $x \in \mathbb{R}^n$ , and also  $x = x - 0 = x - Ax = (I - A)x \in S$ . Thus,  $K \subset S$ . Let  $y \in S$ . Then y = (I - A)x for some  $x \in \mathbb{R}^n$ . This implies that  $Ay = A(I - A)x = (A - A^2)x = 0$  by hypothesis, i.e.,  $y \in K$ . Thus,  $S \subset K$ , and S = K.

3. Find the real-valued function function  $y : \mathbb{R} \to \mathbb{R}$  which satisfies

$$2y'' - y' - 6y = 0,$$
  
 $y(0) = 1,$   
 $y'(0) = 0.$ 

**Solution:** The characteristic equation for this ODE is  $2r^2 - r - 6 = 0$  which has roots at -1.5 and 2. So solutions to the ODE are of the form  $y(t) = c_1 e^{-3t/2} + c_2 e^{2t}$ . The initial values say:

$$c_1 + c_2 = 1$$
  
-1.5c\_1 + 2c\_2 = 0.

So  $c_1 = 4/7$  and  $c_2 = 3/7$ .

4. Let M denote the  $n \times n$  matrix

$$\begin{bmatrix} 1 & 1 & \dots & 1 \\ \vdots & \vdots & & \vdots \\ 1 & 1 & \dots & 1 \end{bmatrix}.$$

Note that  $M^2 = nM$ .

- a. What are the possible eigenvalues of  $aI_n + bM$ ? Here a and b are scalars and  $I_n$  is the identity  $n \times n$  matrix.
- b. Let A be the  $4 \times 4$  matrix

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}.$$

Let k be an integer greater than 1. Find  $A^k$ . Note: You may express your answer in the form of the product  $B^x H C^y$ , where B, H, C are nontrivial matrices whose elements must be specified.

Hence,  $A^k = PD^kP^{-1}$ 

- 5. Let  $f_n(x)$  be defined recursively as  $f_n(x) = 1 \int_0^x s[f_{n-1}(s)]ds$  with  $f_0(x) = 1$ .
  - a. Determine  $f_1(x), f_2(x), f_3(x), f_4(x)$ .
  - b. What is the coefficient of the highest order term in  $f_n$ ?
  - c. Show that for each  $x \in \mathbb{R}$ ,  $\lim_{n\to\infty} f_n(x)$  exists.

**Solution:**  $f_1(x) = 1 - \frac{x^2}{2}, f_2(x) = 1 - \frac{x^2}{2} + \frac{x^4}{8}, f_3(x) = 1 - \frac{x^2}{2} + \frac{x^4}{8} - \frac{x^6}{48}, f_4(x) = 1 - \frac{x^2}{2} + \frac{x^4}{8} - \frac{x^6}{48} + \frac{x^8}{384}$ . We can see from this that the lower order terms never change and that  $f_n$  is  $f_{n-1} + (-1)^n a_n x^{2n}$  where  $a_n$  is gotten by noting that that  $a_1 = 1/2, a_2 = 1/2 * 1/4, a_3 = 1/2 * 1/4 * 1/6, a_4 = 1/2 * 1/4 * 1/6 * 1/8$ . So  $a_n = [2^n * (n!)]^{-1}$ .

To show the limit exists, we can write  $\lim_{n\to\infty} f_n(x)$  as the sum  $\sum_{n=0}^{\infty} (-1)^n a_n(x^2)^n$  which converges since, by the Ratio Test (for instance):

$$\left|\frac{a_{n+1}(x^2)^{n+1}}{a_n(x^2)^n}\right| = x^2(2^{-1})(n+1)^{-1}$$

which converges to 0 for each x.

6. A curve is given by the parametric equations

$$x = a\cos^3 t$$
,  $y = a\sin^3 t$ ,  $0 < t < \frac{\pi}{2}$ .

a. Show that, near t = 0, the equations can be approximated by

$$a - x \approx 3at^2/2, \quad y \approx at^3.$$

b. Find the length of the curve. *Note:* A useful identity is  $\sin 2\theta = 2\sin\theta\cos\theta$ .

**Solution:** (a) By Maclaurin series,  $f(x) \approx f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{1!}x^2$  if x is close to 0. Thus,  $\sin t \approx t$  and  $\cos t \approx 1 - \frac{1}{2}t^2$ . It follows then

$$x = a\cos^3 t \approx a\left(1 - \frac{1}{2}t^2\right)^3 = a\left(1 - \frac{3}{2}t^2 + \cdots\right)$$
$$\approx a - \frac{3}{2}at^2$$

Thus,  $a - x \approx \frac{3}{2}at^2$  and  $y = a\sin^3 t \approx at^3$ .

(b) Since  $(\frac{dx}{dt})^2 = 9a^2 \cos^4 t \sin^2 t$  and  $(\frac{dy}{dt})^2 = 9a^2 \sin^4 t \cos^2 t$ , the expression for the length s of a section of curve in parametric form is

$$\left(\frac{ds}{dt}\right)^2 = \left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2$$
  
=  $9a^2 \sin^2 t \cos^2 t \left(\cos^2 t + \sin^2 t\right)$   
=  $9a^2 \sin^2 t \cos^2 t.$ 

Thus,  $\frac{ds}{dt} = 3a \sin t \cos t = \frac{3}{2}a \sin(2t)$ , and  $s = \int_0^{\pi/2} \frac{3}{2}a \sin(2t) = \frac{3}{2}a$ .

7. A company is looking to invest in two assets. If  $w_1$  and  $w_2$  are the amounts of the investment budget invested in each asset, then the variance of the total investments is given by

$$\frac{1}{4}w_1^2 + \frac{1}{9}w_2^2 + \frac{1}{3}\rho w_1 w_2$$

where  $\rho \in [-1, 1]$  is a known fixed number. The expected return of this investment is given by the expression

$$8w_1 + 4w_2$$

What is the best choice of  $w_1$  and  $w_2$ —in terms of  $\rho$ —to minimize the variance while ensuring an expected return of 24?

**Solution:** The Lagrange multiplier rule says we need to solve

 $2w_1 + w_2 = 6$  $8\lambda + \frac{1}{2}w_1 + \frac{\rho}{3}w_2 = 0$  $4\lambda + \frac{2}{9}w_2 + \frac{\rho}{3}w_1 = 0.$ 

This has the solution  $(w_1, w_2, \lambda) = \frac{1}{24\rho - 25} (12(3\rho - 4), 18(4\rho - 3), 3 - 3\rho^2).$ 

- a. Prove that  $\sum_{n=1}^{\infty} a_n$  converges absolutely if  $\lim_{n\to\infty} n^{\alpha} a_n = A$  for some  $\alpha > 1$ , where 8. A is some real number.
  - b. For each of the following, determine whether the series converges or diverges and provide the justification of your answer.

    - (ii)  $\sum_{n=1}^{\infty} \sin(\frac{\pi}{n^2})$ (ii)  $\sum_{n=1}^{\infty} \frac{(n+1)!}{n^n}$ .

**Solution:** (a) Let  $\epsilon > 0$ . By hypothesis  $\exists N$  such that  $\forall n \geq N$ ,  $|n^{\alpha}a_n - A| \leq \epsilon$ . This implies  $-\epsilon \leq n^{\alpha}a_n - A \leq \epsilon$  and so  $\frac{A-\epsilon}{n^{\alpha}} \leq a_n \leq \frac{A+\epsilon}{n^{\alpha}}$ . It follows then  $|a_n| \leq \frac{r}{n^{\alpha}}$ , where  $r = \max\{|A - \epsilon|, |A + \epsilon|\}$ . Thus,  $\sum_{n=N}^{\infty} |a_n| \leq r \sum_{n=N}^{\infty} \frac{1}{n^{\alpha}} < \infty$  when  $\alpha > 1$ . This shows that  $\sum_{n=1}^{\infty} a_n$  converges absolutely.

(b) (i) Note that

$$\lim_{n \to \infty} n^2 \sin\left(\frac{\pi}{n^2}\right) = \lim_{n \to \infty} \frac{\sin(\pi/n^2)}{1/n^2} = \pi$$

by L'hopital's rule. By part (a),  $\sum_{n=1}^{\infty} \sin\left(\frac{\pi}{n^2}\right)$  converges absolutely and hence converges.

(ii) Note that

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(n+2)!/(n+1)^{n+1}}{(n+1)!/n^n} = \lim_{n \to \infty} \left[ \frac{n+2}{n+1} \frac{n^n}{(n+1)^n} \right]$$
$$= \lim_{n \to \infty} \left[ \frac{n+2}{n+1} \left( 1 + \frac{1}{n} \right)^{-n} \right] = e^{-1} < 1$$

Thus, by the ratio test,  $\sum_{n=1}^{\infty} a_n$  converges.

9. A solid cone of uniform density  $\rho$ , height H and base radius R rotates at constant angular velocity  $\omega$  about its axis. Find the kinetic energy of the cone. Note: The kinetic energy of a particle of mass m moving at speed v is given by  $E = \frac{1}{2}mv^2$ .



10. Given a position x, y, the elevation in a portion of a canyon floor is given by

$$f(x,y) = (1-x)^2 + 2(y-x^2)^2$$

We drive a vertical post into the ground at  $P_1 = (0,0)$ ,  $P_2 = (1,0)$  and at  $P_3 = (1,1)$ . The portion of each post not buried in the ground is length 1. A (not necessarily level) platform is attached to the top of these three posts. If we put a fourth post at  $P_2$  which is normal to the canyon floor with length 1 sticking out of the ground, what is the exact angle between this fourth post and the upward normal of the platform?

**Solution:** The platform is given by the three points (0, 0, 2), (1, 0, 3), (1, 1, 1), so the platform's normal given by  $[(0, 0, 2) - (1, 0, 3)] \times [(1, 1, 1) - (1, 0, 3)] = (-1, 0, -1) \times (0, 1, -2) = \begin{vmatrix} i & j & k \\ -1 & 0 & -1 \\ 0 & 1 & -2 \end{vmatrix} = 1i - 2j - k$ . So the upward normal of the platform is (-1, 2, 1).  $\nabla f(x, y) = [-2(1 - x) - 8x(y - x^2), 4(y - x^2)]^T$ . So setting both of those

values to zero, leads us to conclude  $y = x^2$  (from the second) and x = 1 from the first. The normal at (1,0)) is of course (8, -4, 1). Thus the dot product of the two normal vectors is -15. Thus the angle is  $\cos^{-1}(\frac{-15}{\sqrt{81}\sqrt{6}}) = \cos^{-1}(\frac{-5}{3\sqrt{6}})$ .