
Calculators are allowed but you must give exact values, not approximate
answers.

You must clearly justify all answers.
Problems are of equal weight.

Number:

1. Find the value of a for which the integral∫ ∞
1

a

x(2x+ a)
dx

converges to the value of 1.

Solution:

∫ ∞
1

a

x (2x+ a)
dx =

∫ ∞
1

(
1

x
− 2

2x+ a

)
dx = ln

(
x

2x+ a

)∣∣∣∣∞
1

= ln

(
2 + a

2

)
set
= 1

Thus, a = 2(e− 1).

2. a. Show, by an example, that linear dependence of the columns of a matrix does not
imply the linear dependence of the rows. (Note: you need to briefly indicate why
the columns of your matrix are linearly dependent and the rows are not. A proof
is not needed.)

b. State the rank-nullity theorem, a.k.a. the dimension theorem, for matrices.

c. Show that, if an n×n matrix A is such that A2 = A, then rank(A)+rank(I−A) = n.

Solution: (a) An example is [
1 0 1
0 1 1

]
.

It must be a non-square matrix.

(b) The Dimension Theorem: For any (m× n) matrix A,

rank(A) + nullity(A) = n

where nullity(A) is the dimension of the solution space of Ax = 0.



(c) Let K = {x : Ax = 0}, the kernel of A, and S = {(I − A)x : x ∈ Rn},
the column space of I − A. If we can show K = S, then dim(K) = dim(S), i.e.,
nullity(A) = rank(I − A), and so the result follows from the dimension theorem.
Let x ∈ K. Note that x ∈ Rn, and also x = x − 0 = x − Ax = (I − A)x ∈ S.
Thus, K ⊂ S. Let y ∈ S. Then y = (I − A)x for some x ∈ Rn. This implies that
Ay = A(I − A)x = (A − A2)x = 0 by hypothesis, i.e., y ∈ K. Thus, S ⊂ K, and
S = K.

3. Find the real-valued function function y : R→ R which satisfies

2y′′ − y′ − 6y = 0,

y(0) = 1,

y′(0) = 0.

Solution: The characteristic equation for this ODE is 2r2 − r − 6 = 0 which has
roots at −1.5 and 2. So solutions to the ODE are of the form y(t) = c1e

−3t/2 + c2e
2t.

The initial values say:

c1 + c2 = 1

−1.5c1 + 2c2 = 0.

So c1 = 4/7 and c2 = 3/7.

4. Let M denote the n× n matrix 1 1 . . . 1
...

...
...

1 1 . . . 1

 .
Note that M2 = nM .

a. What are the possible eigenvalues of aIn + bM? Here a and b are scalars and In is
the identity n× n matrix.

b. Let A be the 4× 4 matrix

A =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 .
Let k be an integer greater than 1. Find Ak. Note: You may express your answer
in the form of the product BxHCy, where B, H, C are nontrivial matrices whose
elements must be specified.
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Solution: (a) Let (x, λ) be an eigenvector-eigenvalue pair of aIn + bM . Then (i)
if
∑n

i=1 xi = 0, i.e., Mx = 0, then (aIn + bM)x = λx implies that ax = λx and
hence λ = a; (ii) if

∑n
i=1 xi 6= 0, i.e., Mx 6= 0, then (aIn + bM)x = λx ⇒

(aM + bM2)x = λMx ⇒ (aM + nbM)x = λMx ⇒ (a+ nb− λ)Mx = 0. Since
Mx 6= 0, λ = a+ nb.

(b) Note that A = aI4 + bM , where a = −1 and b = 1. So the eigenvalues of A are
λ = a = −1 and λ = a+ 4b = 3 by part (a).

Case 1: λ = −1. Thus, (A+ I)x =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

x = 0,

implying that
∑n

i=1 xi = 0, consistent with the condition for λ = a. Thus a basis for
x is

{
[1, 0, 0,−1]′ , [0, 1, 0,−1]′ , [0, 0, 1,−1]′

}
.

Case 2: λ = 3. Thus, (A− 3I)x =


−3 1 1 1
1 −3 1 1
1 1 −3 1
1 1 1 −3

x = 0.

By inspection, or some other method, x = [1, 1, 1, 1]′.

Putting these together, we can write AP = PD, where

P =


1 0 0 1
0 1 0 1
0 0 1 1
−1 −1 −1 1

 , D =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 3

 .
Hence, Ak = PDkP−1

5. Let fn(x) be defined recursively as fn(x) = 1−
∫ x
0
s[fn−1(s)]ds with f0(x) = 1.

a. Determine f1(x), f2(x), f3(x), f4(x).

b. What is the coefficient of the highest order term in fn?

c. Show that for each x ∈ R, limn→∞ fn(x) exists.

Solution: f1(x) = 1 − x2

2
, f2(x) = 1 − x2

2
+ x4

8
, f3(x) = 1 − x2

2
+ x4

8
− x6

48
, f4(x) =

1− x2

2
+ x4

8
− x6

48
+ x8

384
. We can see from this that the lower order terms never change

and that fn is fn−1 + (−1)nanx
2n where an is gotten by noting that that a1 = 1/2,

a2 = 1/2 ∗ 1/4, a3 = 1/2 ∗ 1/4 ∗ 1/6,a4 = 1/2 ∗ 1/4 ∗ 1/6 ∗ 1/8. So an = [2n ∗ (n!)]−1.
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To show the limit exists, we can write limn→∞ fn(x) as the sum
∑∞

n=0(−1)nan(x2)n

which converges since, by the Ratio Test (for instance):

|an+1(x
2)n+1

an(x2)n
| = x2(2−1)(n+ 1)−1

which converges to 0 for each x.

6. A curve is given by the parametric equations

x = a cos3 t, y = a sin3 t, 0 < t <
π

2
.

a. Show that, near t = 0, the equations can be approximated by

a− x ≈ 3at2/2, y ≈ at3.

b. Find the length of the curve. Note: A useful identity is sin 2θ = 2 sin θ cos θ.

Solution: (a) By Maclaurin series, f(x) ≈ f(0) + f ′(0)
1!
x + f”(0)

1!
x2 if x is close to 0.

Thus, sin t ≈ t and cos t ≈ 1− 1
2
t2. It follows then

x = a cos3 t ≈ a

(
1− 1

2
t2
)3

= a

(
1− 3

2
t2 + · · ·

)
≈ a− 3

2
at2

Thus, a− x ≈ 3
2
at2 and y = a sin3 t ≈ at3.

(b) Since (dx
dt

)2 = 9a2 cos4 t sin2 t and (dy
dt

)2 = 9a2 sin4 t cos2 t, the expression for the
length s of a section of curve in parametric form is(

ds

dt

)2

=

(
dx

dt

)2

+

(
dy

dt

)2

= 9a2 sin2 t cos2 t
(
cos2 t+ sin2 t

)
= 9a2 sin2 t cos2 t.

Thus, ds
dt

= 3a sin t cos t = 3
2
a sin(2t), and s =

∫ π/2
0

3
2
a sin(2t) = 3

2
a.

7. A company is looking to invest in two assets. If w1 and w2 are the amounts of the
investment budget invested in each asset, then the variance of the total investments is
given by

1

4
w2

1 +
1

9
w2

2 +
1

3
ρw1w2
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where ρ ∈ [−1, 1] is a known fixed number. The expected return of this investment is
given by the expression

8w1 + 4w2

What is the best choice of w1 and w2—in terms of ρ—to minimize the variance while
ensuring an expected return of 24?

Solution: The Lagrange multiplier rule says we need to solve

2w1 + w2 = 6

8λ+
1

2
w1 +

ρ

3
w2 = 0

4λ+
2

9
w2 +

ρ

3
w1 = 0.

This has the solution (w1, w2, λ) = 1
24ρ−25(12(3ρ− 4), 18(4ρ− 3), 3− 3ρ2).

8. a. Prove that
∑∞

n=1 an converges absolutely if limn→∞ n
αan = A for some α > 1, where

A is some real number.

b. For each of the following, determine whether the series converges or diverges and
provide the justification of your answer.

(ii)
∑∞

n=1 sin( π
n2 )

(ii)
∑∞

n=1
(n+1)!
nn

.

Solution: (a) Let ε > 0. By hypothesis ∃N such that ∀n ≥ N , |nαan − A| ≤ ε.
This implies −ε ≤ nαan − A ≤ ε and so A−ε

nα
≤ an ≤ A+ε

nα
. It follows then |an| ≤ r

nα
,

where r = max{|A − ε|, |A + ε|}. Thus,
∑∞

n=N |an| ≤ r
∑∞

n=N
1
nα

< ∞ when α > 1.
This shows that

∑∞
n=1 an converges absolutely.

(b) (i) Note that

lim
n→∞

n2 sin
( π
n2

)
= lim

n→∞

sin(π/n2)

1/n2
= π,

by L’hopital’s rule. By part (a),
∑∞

n=1 sin
(
π
n2

)
converges absolutely and hence con-

verges.

(ii) Note that

lim
n→∞

an+1

an
= lim

n→∞

(n+ 2)!/(n+ 1)n+1

(n+ 1)!/nn
= lim

n→∞

[
n+ 2

n+ 1

nn

(n+ 1)n

]
= lim

n→∞

[
n+ 2

n+ 1

(
1 +

1

n

)−n]
= e−1 < 1

Thus, by the ratio test,
∑∞

n=1 an converges.
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9. A solid cone of uniform density ρ, height H and base radius R rotates at constant angular
velocity ω about its axis. Find the kinetic energy of the cone. Note: The kinetic energy
of a particle of mass m moving at speed v is given by E = 1

2
mv2.

Solution: Based on the diagram below,

For a cylindrical shell of thickness dx, the amount of kinetic energy is

dE = 1
2
(ωx)2dm = 1

2
ω2ρx2 · 2πxydx. Using the fact that y

R−x = H
R

,

E = πω2ρ

∫ R

0

x3y dx = πω2ρ
H

R

∫ R

0

x3(R− x) dx

= πω2ρ
HR4

20
.

10. Given a position x, y, the elevation in a portion of a canyon floor is given by

f(x, y) = (1− x)2 + 2(y − x2)2

We drive a vertical post into the ground at P1 = (0, 0), P2 = (1, 0) and at P3 = (1, 1).
The portion of each post not buried in the ground is length 1. A (not necessarily level)
platform is attached to the top of these three posts. If we put a fourth post at P2 which
is normal to the canyon floor with length 1 sticking out of the ground, what is the exact
angle between this fourth post and the upward normal of the platform?

Solution: The platform is given by the three points (0, 0, 2), (1, 0, 3), (1, 1, 1), so the
platform’s normal given by [(0, 0, 2)− (1, 0, 3)]× [(1, 1, 1)− (1, 0, 3)] = (−1, 0,−1)×

(0, 1,−2) =

∣∣∣∣∣∣
i j k
−1 0 −1
0 1 −2

∣∣∣∣∣∣ = 1i − 2j − k. So the upward normal of the platform is

(−1, 2, 1). ∇f(x, y) = [−2(1− x)− 8x(y − x2), 4(y − x2)]T . So setting both of those
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values to zero, leads us to conclude y = x2 (from the second) and x = 1 from the
first. The normal at (1, 0)) is of course (8,−4, 1). Thus the dot product of the two
normal vectors is −15. Thus the angle is cos−1( −15√

81
√
6
) = cos−1( −5

3
√
6
).
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