Calculators are allowed but you must give exact values, not approximate answers.
You must clearly justify all answers.
Problems are of equal weight.

Number: \qquad

1. Find the value of a for which the integral

$$
\int_{1}^{\infty} \frac{a}{x(2 x+a)} d x
$$

converges to the value of 1 .

Solution:

$$
\begin{aligned}
\int_{1}^{\infty} \frac{a}{x(2 x+a)} d x=\int_{1}^{\infty}\left(\frac{1}{x}-\frac{2}{2 x+a}\right) d x & =\left.\ln \left(\frac{x}{2 x+a}\right)\right|_{1} ^{\infty} \\
& =\ln \left(\frac{2+a}{2}\right) \stackrel{\text { set }}{=} 1
\end{aligned}
$$

Thus, $a=2(e-1)$.
2. a. Show, by an example, that linear dependence of the columns of a matrix does not imply the linear dependence of the rows. (Note: you need to briefly indicate why the columns of your matrix are linearly dependent and the rows are not. A proof is not needed.)
b. State the rank-nullity theorem, a.k.a. the dimension theorem, for matrices.
c. Show that, if an $n \times n$ matrix A is such that $A^{2}=A$, then $\operatorname{rank}(A)+\operatorname{rank}(I-A)=n$.

Solution: (a) An example is

$$
\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right] .
$$

It must be a non-square matrix.
(b) The Dimension Theorem: For any $(m \times n)$ matrix A,

$$
\operatorname{rank}(A)+\operatorname{nullity}(A)=n
$$

where $\operatorname{nullity}(A)$ is the dimension of the solution space of $A x=0$.
(c) Let $K=\{x: A x=0\}$, the kernel of A, and $S=\left\{(I-A) x: x \in \mathcal{R}^{n}\right\}$, the column space of $I-A$. If we can show $K=S$, then $\operatorname{dim}(K)=\operatorname{dim}(S)$, i.e., $\operatorname{nullity}(A)=\operatorname{rank}(I-A)$, and so the result follows from the dimension theorem. Let $x \in K$. Note that $x \in \mathcal{R}^{n}$, and also $x=x-0=x-A x=(I-A) x \in S$. Thus, $K \subset S$. Let $y \in S$. Then $y=(I-A) x$ for some $x \in \mathcal{R}^{n}$. This implies that $A y=A(I-A) x=\left(A-A^{2}\right) x=0$ by hypothesis, i.e., $y \in K$. Thus, $S \subset K$, and $S=K$.
3. Find the real-valued function function $y: \mathbb{R} \rightarrow \mathbb{R}$ which satisfies

$$
\begin{aligned}
2 y^{\prime \prime}-y^{\prime}-6 y & =0, \\
y(0) & =1, \\
y^{\prime}(0) & =0 .
\end{aligned}
$$

Solution: The characteristic equation for this ODE is $2 r^{2}-r-6=0$ which has roots at -1.5 and 2. So solutions to the ODE are of the form $y(t)=c_{1} e^{-3 t / 2}+c_{2} e^{2 t}$. The initial values say:

$$
\begin{array}{r}
c_{1}+c_{2}=1 \\
-1.5 c_{1}+2 c_{2}=0 .
\end{array}
$$

So $c_{1}=4 / 7$ and $c_{2}=3 / 7$.
4. Let M denote the $n \times n$ matrix

$$
\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
\vdots & \vdots & & \vdots \\
1 & 1 & \ldots & 1
\end{array}\right]
$$

Note that $M^{2}=n M$.
a. What are the possible eigenvalues of $a I_{n}+b M$? Here a and b are scalars and I_{n} is the identity $n \times n$ matrix.
b. Let A be the 4×4 matrix

$$
A=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right]
$$

Let k be an integer greater than 1 . Find A^{k}. Note: You may express your answer in the form of the product $B^{x} H C^{y}$, where B, H, C are nontrivial matrices whose elements must be specified.

Solution: (a) Let (x, λ) be an eigenvector-eigenvalue pair of $a I_{n}+b M$. Then (i) if $\sum_{i=1}^{n} x_{i}=0$, i.e., $M x=0$, then $\left(a I_{n}+b M\right) x=\lambda x$ implies that $a x=\lambda x$ and hence $\lambda=a$; (ii) if $\sum_{i=1}^{n} x_{i} \neq 0$, i.e., $M x \neq 0$, then $\left(a I_{n}+b M\right) x=\lambda x \quad \Rightarrow$ $\left(a M+b M^{2}\right) x=\lambda M x \Rightarrow(a M+n b M) x=\lambda M x \quad \Rightarrow \quad(a+n b-\lambda) M x=0$. Since $M x \neq 0, \lambda=a+n b$.
(b) Note that $A=a I_{4}+b M$, where $a=-1$ and $b=1$. So the eigenvalues of A are $\lambda=a=-1$ and $\lambda=a+4 b=3$ by part (a).
Case 1: $\lambda=-1$. Thus, $(A+I) x=\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}\right] x=0$,
implying that $\sum_{i=1}^{n} x_{i}=0$, consistent with the condition for $\lambda=a$. Thus a basis for x is $\left\{[1,0,0,-1]^{\prime},[0,1,0,-1]^{\prime},[0,0,1,-1]^{\prime}\right\}$.
Case 2: $\lambda=3$. Thus, $(A-3 I) x=\left[\begin{array}{cccc}-3 & 1 & 1 & 1 \\ 1 & -3 & 1 & 1 \\ 1 & 1 & -3 & 1 \\ 1 & 1 & 1 & -3\end{array}\right] x=0$.
By inspection, or some other method, $x=[1,1,1,1]^{\prime}$.
Putting these together, we can write $A P=P D$, where

$$
P=\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
-1 & -1 & -1 & 1
\end{array}\right], \quad D=\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 3
\end{array}\right]
$$

Hence, $A^{k}=P D^{k} P^{-1}$
5. Let $f_{n}(x)$ be defined recursively as $f_{n}(x)=1-\int_{0}^{x} s\left[f_{n-1}(s)\right] d s$ with $f_{0}(x)=1$.
a. Determine $f_{1}(x), f_{2}(x), f_{3}(x), f_{4}(x)$.
b. What is the coefficient of the highest order term in f_{n} ?
c. Show that for each $x \in \mathbb{R}, \lim _{n \rightarrow \infty} f_{n}(x)$ exists.

Solution: $f_{1}(x)=1-\frac{x^{2}}{2}, f_{2}(x)=1-\frac{x^{2}}{2}+\frac{x^{4}}{8}, f_{3}(x)=1-\frac{x^{2}}{2}+\frac{x^{4}}{8}-\frac{x^{6}}{48}, f_{4}(x)=$ $1-\frac{x^{2}}{2}+\frac{x^{4}}{8}-\frac{x^{6}}{48}+\frac{x^{8}}{384}$. We can see from this that the lower order terms never change and that f_{n} is $f_{n-1}+(-1)^{n} a_{n} x^{2 n}$ where a_{n} is gotten by noting that that $a_{1}=1 / 2$, $a_{2}=1 / 2 * 1 / 4, a_{3}=1 / 2 * 1 / 4 * 1 / 6, a_{4}=1 / 2 * 1 / 4 * 1 / 6 * 1 / 8$. So $a_{n}=\left[2^{n} *(n!)\right]^{-1}$.

To show the limit exists, we can write $\lim _{n \rightarrow \infty} f_{n}(x)$ as the sum $\sum_{n=0}^{\infty}(-1)^{n} a_{n}\left(x^{2}\right)^{n}$ which converges since, by the Ratio Test (for instance):

$$
\left|\frac{a_{n+1}\left(x^{2}\right)^{n+1}}{a_{n}\left(x^{2}\right)^{n}}\right|=x^{2}\left(2^{-1}\right)(n+1)^{-1}
$$

which converges to 0 for each x.
6. A curve is given by the parametric equations

$$
x=a \cos ^{3} t, \quad y=a \sin ^{3} t, \quad 0<t<\frac{\pi}{2} .
$$

a. Show that, near $t=0$, the equations can be approximated by

$$
a-x \approx 3 a t^{2} / 2, \quad y \approx a t^{3}
$$

b. Find the length of the curve. Note: A useful identity is $\sin 2 \theta=2 \sin \theta \cos \theta$.

Solution: (a) By Maclaurin series, $f(x) \approx f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{1!} x^{2}$ if x is close to 0 . Thus, $\sin t \approx t$ and $\cos t \approx 1-\frac{1}{2} t^{2}$. It follows then

$$
\begin{aligned}
x & =a \cos ^{3} t \approx a\left(1-\frac{1}{2} t^{2}\right)^{3}=a\left(1-\frac{3}{2} t^{2}+\cdots\right) \\
& \approx a-\frac{3}{2} a t^{2}
\end{aligned}
$$

Thus, $a-x \approx \frac{3}{2} a t^{2}$ and $y=a \sin ^{3} t \approx a t^{3}$.
(b) Since $\left(\frac{d x}{d t}\right)^{2}=9 a^{2} \cos ^{4} t \sin ^{2} t$ and $\left(\frac{d y}{d t}\right)^{2}=9 a^{2} \sin ^{4} t \cos ^{2} t$, the expression for the length s of a section of curve in parametric form is

$$
\begin{aligned}
\left(\frac{d s}{d t}\right)^{2} & =\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2} \\
& =9 a^{2} \sin ^{2} t \cos ^{2} t\left(\cos ^{2} t+\sin ^{2} t\right) \\
& =9 a^{2} \sin ^{2} t \cos ^{2} t
\end{aligned}
$$

Thus, $\frac{d s}{d t}=3 a \sin t \cos t=\frac{3}{2} a \sin (2 t)$, and $s=\int_{0}^{\pi / 2} \frac{3}{2} a \sin (2 t)=\frac{3}{2} a$.
7. A company is looking to invest in two assets. If w_{1} and w_{2} are the amounts of the investment budget invested in each asset, then the variance of the total investments is given by

$$
\frac{1}{4} w_{1}^{2}+\frac{1}{9} w_{2}^{2}+\frac{1}{3} \rho w_{1} w_{2}
$$

where $\rho \in[-1,1]$ is a known fixed number. The expected return of this investment is given by the expression

$$
8 w_{1}+4 w_{2}
$$

What is the best choice of w_{1} and w_{2}-in terms of ρ - to minimize the variance while ensuring an expected return of 24 ?

Solution: The Lagrange multiplier rule says we need to solve

$$
\begin{aligned}
2 w_{1}+w_{2} & =6 \\
8 \lambda+\frac{1}{2} w_{1}+\frac{\rho}{3} w_{2} & =0 \\
4 \lambda+\frac{2}{9} w_{2}+\frac{\rho}{3} w_{1} & =0
\end{aligned}
$$

This has the solution $\left(w_{1}, w_{2}, \lambda\right)=\frac{1}{24 \rho-25}\left(12(3 \rho-4), 18(4 \rho-3), 3-3 \rho^{2}\right)$.
8. a. Prove that $\sum_{n=1}^{\infty} a_{n}$ converges absolutely if $\lim _{n \rightarrow \infty} n^{\alpha} a_{n}=A$ for some $\alpha>1$, where A is some real number.
b. For each of the following, determine whether the series converges or diverges and provide the justification of your answer.
(ii) $\sum_{n=1}^{\infty} \sin \left(\frac{\pi}{n^{2}}\right)$
(ii) $\sum_{n=1}^{\infty} \frac{(n+1)!}{n^{n}}$.

Solution: (a) Let $\epsilon>0$. By hypothesis $\exists N$ such that $\forall n \geq N,\left|n^{\alpha} a_{n}-A\right| \leq \epsilon$. This implies $-\epsilon \leq n^{\alpha} a_{n}-A \leq \epsilon$ and so $\frac{A-\epsilon}{n^{\alpha}} \leq a_{n} \leq \frac{A+\epsilon}{n^{\alpha}}$. It follows then $\left|a_{n}\right| \leq \frac{r}{n^{\alpha}}$, where $r=\max \{|A-\epsilon|,|A+\bar{\epsilon}|\}$. Thus, $\sum_{n=N}^{n^{\infty}}\left|a_{n}\right| \leq r \sum_{n=N}^{\infty} \frac{1}{n^{\alpha}}<\infty$ when $\alpha>1$. This shows that $\sum_{n=1}^{\infty} a_{n}$ converges absolutely.
(b) (i) Note that

$$
\lim _{n \rightarrow \infty} n^{2} \sin \left(\frac{\pi}{n^{2}}\right)=\lim _{n \rightarrow \infty} \frac{\sin \left(\pi / n^{2}\right)}{1 / n^{2}}=\pi
$$

by L'hopital's rule. By part (a), $\sum_{n=1}^{\infty} \sin \left(\frac{\pi}{n^{2}}\right)$ converges absolutely and hence converges.
(ii) Note that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} & =\lim _{n \rightarrow \infty} \frac{(n+2)!/(n+1)^{n+1}}{(n+1)!/ n^{n}}=\lim _{n \rightarrow \infty}\left[\frac{n+2}{n+1} \frac{n^{n}}{(n+1)^{n}}\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{n+2}{n+1}\left(1+\frac{1}{n}\right)^{-n}\right]=e^{-1}<1
\end{aligned}
$$

Thus, by the ratio test, $\sum_{n=1}^{\infty} a_{n}$ converges.
9. A solid cone of uniform density ρ, height H and base radius R rotates at constant angular velocity ω about its axis. Find the kinetic energy of the cone. Note: The kinetic energy of a particle of mass m moving at speed v is given by $E=\frac{1}{2} m v^{2}$.

Solution: Based on the diagram below,

For a cylindrical shell of thickness $d x$, the amount of kinetic energy is $d E=\frac{1}{2}(\omega x)^{2} d m=\frac{1}{2} \omega^{2} \rho x^{2} \cdot 2 \pi x y d x$. Using the fact that $\frac{y}{R-x}=\frac{H}{R}$,

$$
\begin{aligned}
E & =\pi \omega^{2} \rho \int_{0}^{R} x^{3} y d x=\pi \omega^{2} \rho \frac{H}{R} \int_{0}^{R} x^{3}(R-x) d x \\
& =\pi \omega^{2} \rho \frac{H R^{4}}{20}
\end{aligned}
$$

10. Given a position x, y, the elevation in a portion of a canyon floor is given by

$$
f(x, y)=(1-x)^{2}+2\left(y-x^{2}\right)^{2}
$$

We drive a vertical post into the ground at $P_{1}=(0,0), P_{2}=(1,0)$ and at $P_{3}=(1,1)$. The portion of each post not buried in the ground is length 1. A (not necessarily level) platform is attached to the top of these three posts. If we put a fourth post at P_{2} which is normal to the canyon floor with length 1 sticking out of the ground, what is the exact angle between this fourth post and the upward normal of the platform?

Solution: The platform is given by the three points $(0,0,2),(1,0,3),(1,1,1)$, so the platform's normal given by $[(0,0,2)-(1,0,3)] \times[(1,1,1)-(1,0,3)]=(-1,0,-1) \times$ $(0,1,-2)=\left|\begin{array}{ccc}i & j & k \\ -1 & 0 & -1 \\ 0 & 1 & -2\end{array}\right|=1 i-2 j-k$. So the upward normal of the platform is $(-1,2,1) . \nabla f(x, y)=\left[-2(1-x)-8 x\left(y-x^{2}\right), 4\left(y-x^{2}\right)\right]^{T}$. So setting both of those
values to zero, leads us to conclude $y=x^{2}$ (from the second) and $x=1$ from the first. The normal at $(1,0))$ is of course $(8,-4,1)$. Thus the dot product of the two normal vectors is -15 . Thus the angle is $\cos ^{-1}\left(\frac{-15}{\sqrt{81} \sqrt{6}}\right)=\cos ^{-1}\left(\frac{-5}{3 \sqrt{6}}\right)$.

