
Graduate Qualifying Exam – Fall 2018 – Solutions

Problem 1. A rectangular box with its base in the xy-plane is inscribed under the graph of the
paraboloid z = 1− x2 − y2, z ≥ 0. Find the maximum possible volume of the box, and rigorously
justify that you have found the maximum.

By symmetry, we assume the sides of the box are parallel to the vertical coordinate planes. In
addition, we may assume that if the base corner in the first quadrant is (x, y), then the other corners
are at (−x, y), (−x,−y) and (x,−y). The total volume of the box is thus V (x, y) = 4xy(1−x2−y2).
Since we are assuming x, y ≥ 0, we note that if either is greater than one, the box is no longer under
the paraboloid, so it suffices to maximize V (x, y) subject to the assumption that 0 ≤ x ≤ 1 and
0 ≤ y ≤ 1. On the boundary of the region we get values of V that are less than or equal to zero,
so we check interior points for which ∂V/∂x = 0 = ∂V/∂y. We find that 4y(1− 3x2 − y2) = 0 and
4x(1 − x2 − 3y2) = 0. Since V (0, 0) = 0, we may assume x and y are nonzero, which allows us to
deduce that y = x or y = −x. Since the latter equation only has (0, 0) as a solution, our optimum
values are those for which y = x. Plugging this into 1 = 3x2 + y2 yields x = 1/2 and pluggin this
into our volume function yields V (1/2, 1/2) = 1/2. Notice that this must be a maximum as it is
our only extreme point in the closed bounded region.

Problem 2. Find the volume of the region bounded below by the paraboloid z = x2 + y2 and
above by the plane z = 2x.

We use cylindrical coordinates. The base region on the rθ-plane over which we integrate is
bounded by the ellipse r2 = 2r cos θ or r = 2 cos θ, so our integral is∫ π/2
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Problem 3.

(a) Prove that ln(1 + x−1) > 1
1+x

for x > 0.

By rearranging and taking exponentials, it suffices to prove that (1+x−1)e−
1

1+x > 1 for x > 0.
To establish this inequality, we expand the exponential in a power series so that the first two

terms of (1 + x−1)e−
1

1+x are x+1
x

+− 1
x

= 1 while, for n even, the n plus n+ 1 term is

1

xn
(−1)n

(
1

1 + x

)n−1(
1− 1

n(1 + x)

)
which is greater than zero.

(b) Prove that x ln(1 + x−1) is strictly increasing for x > 0.

Taking derivatives we obtain ln(1 + x−1)− 1
x+1

so the result now follows from part (a).

(c) Compute lim(x ln(1 + x−1)) as x→ 0 and as x→∞.

The first limit equals lim
x→0

ln(1+x−1)
x−1 so L’Hopitals rule implies it is lim

x→0

1
(1+x−1)

= 0. Similarly,

the other limit is 1.

Problem 4.

(a) Find all points on the ellipsoid 2x2 + 3y2 + z2 = 9 whose tangent planes are parallel to the
yz-plane.

Let G(z, y, z) = 2x2+3y2+z2−9. Then for a point Q on the ellipsoid, ∇G(Q) is perpendicular
to the tangent plane of the ellipsoid at Q. Thus, we need all Q = (x, y, z) on the ellipsoid such

that the vector 4x~i+ 6y~j + 2z~k has zero y and z component. We find two points, (± 3√
2
, 0, 0).

(b) The point P = (1,−1, 2) lies on both the paraboloid x2+y2 = z and the ellipsoid 2x2+3y2+z2 =
9. Write an equation of the plane through P that is normal to the curve of intersection of these
two surfaces.

Let F (x, y, z) = x2+y2−z. Then∇F (P ) is normal to the tangent plane of the paraboloid at P
and∇G(P ) is normal to the tangent plane of the ellipsoid at P . Therefore, ~n = ∇F (P )×∇G(P )
is tangent to the intersection curve at P , so we need the equation of a plane through P with

normal vector ~n. We find ∇F (P ) = 2~i − 2~j − ~k while ∇G(P ) = 4~i − 6~j + 4~k, so that ~n =

−14~i− 12~j − 4~k, which is proportional to 7~i+ 6~j + 2~k. This gives the plane 7x+ 6y + 2z = 5.

Problem 5. Let a, b, c ∈ R and suppose a, b and c are not all zero. Find the general solution to
the differential equation ay′′ + by′ + cy = 0 according to the values of a, b and c.

The characteristic equation for this differential equation is ar2 + br + c = 0. There are several
cases. If a = 0 and b = 0, then y is constant. If a = 0 and b 6= 0, then y = αe−

cx
b where α is

a constant. If a 6= 0 and b2 − 4ac > 0, then y has the form c1e
αx + c2e

βx where α and β are the
distinct roots of the characteristic equation. If b2 = 4ac, then y has the form (c1 + c2x)eαx where α
is the root of the characteristic equation. Finally, if b2 − 4ac < 0, then there is a pair of complex
roots of the form α± βi, and y has the form (c1 cos βx+ c2 sin βx)eαx.

Problem 6. Let V andW be vector spaces, and suppose that T : V → W is a linear transformation.
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(a) Let v1,v2, ...,vp be vectors in V . If the set {T (v1), ..., T (vp)} is linearly independent, what
conclusion, if any, can you draw about the linear independence of the set {v1,v2, ...,vp}?

We will show that the set {v1,v2, ...,vp} is also linearly independent. Suppose c1v1 + c2v2 +
· · · + cpvp = 0 for some scalars c1, ..., cp. Applying T and using the properties of linear trans-
formations yields c1T (v1) + c2T (v2) + · · · + cpT (vp) = T (0) = 0. Since {T (v1), ..., T (vp)} is
linearly independent, then c1 = c2 = · · · = cp = 0, hence {v1,v2, ...,vp} is linearly independent.

(b) Show that the kernel of T , {v ∈ V : T (v) = 0}, is a subspace of V .

Let K = {v ∈ V : T (v) = 0}. Clearly K ⊆ V . Since T (0) = 0, we have 0 ∈ K. If u,v ∈ K,
then T (u + v) = T (u) + T (v) = 0 + 0 = 0. Then if c is a scalar, T (cu) = cT (u) = c0 = 0.
Thus K is nonempty and closed under vector addition and scalar multiplication, therefore K is
a subspace of V .

(c) Let T : M2×2 → R be the linear transformation defined by T

([
a b
c d

])
= a + d. Find a basis

for the kernel of T and compute its dimension.

The kernel of T consists of all matrices of the form

[
a b
c −a

]
. A basis for the kernel is given

by

{[
1 0
0 −1

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]}
, so the kernel has dimension 3.

Problem 7.

(a) Let A =

[
.4 −.3
.4 1.2

]
. Compute lim

k→∞
Ak, if the limit exists, or explain why it does not.

The eigenvalues of A are 1 and 0.6. We can diagonalize A as

A =

[
−1 −3
2 2

] [
1 0
0 0.6

]
· 1

4

[
2 3
−2 −1

]
.

Then for a positive integer k, we have

Ak =

[
−1 −3
2 2

] [
1k 0
0 (0.6)k

]
· 1

4

[
2 3
−2 −1

]
→ 1

4

[
−2 −3
4 6

]
as k →∞.

(b) Suppose an n× n matrix A has n distinct eigenvalues, each less than 1 in absolute value. Find
lim
k→∞

Ak and justify your answer.

Since A has n distinct eigenvalues, it is diagonalizable, so A = PDP−1 for some invertible
matrix P and diagonal matrix D. Then for any positive integer k, Ak = (PDP−1)k = PDkP−1.
Then Dk is the diagonal matrix whose entries are the corresponding entries of D raised to the
kth power. Since the entries of D are the eigenvalues of A, they are each less than one in
absolute value, so as k →∞, Dk approaches the zero matrix. Therefore Ak → 0 as k →∞.

Problem 8. A television camera is positioned on the ground 4000 feet from the base of a rocket
launching pad. The camera rotates to keep the rocket in view, and the automatic focusing mecha-
nism must take into account the changing distance between the camera and the rocket. Suppose a
rocket launched from the pad rises vertically at 600 ft/s when the rocket is at 3000 feet.
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(a) How fast is this distance between the camera and the rocket changing at that moment?

The camera, launch pad, and rocket form three vertices of a right triangle, whose hypotenuse,
of length z, is the line between the camera and the rocket. Let y be the length of the side
representing the line between the rocket and the launch pad. Then y and z are related by
y2 + 16000 = z2. Differentiating with respect to time t, we have 2y dy

dt
= 2z dz

dt
. When y = 3000,

z = 5000 and dy
dt

= 600 ft/s, so the distance z is changing at the rate of dz
dt

= 360 ft/s.

(b) How fast is the angle between the rocket and the ground, from the point of view of the camera,
changing at that moment?

Let θ be the angle between the camera’s line of sight and the ground. Then we have cos θ =
4000
z

. Differentiating with respect to time t gives − sin θ dθ
dt

= −4000
z2

dz
dt

. Using part (a) and the

fact that sin θ = 3
5

at the moment in question, we have dθ
dt

= 0.096 radians per second.

Problem 9. Determine whether each series below converges or diverges. If a series converges, find
its sum.

(a)
∞∑
n=1

2n2 + 3n√
5 + n5

This series diverges by the limit comparison test with
∞∑
n=1

2√
n

, which is a divergent p-series.

(b)
∞∑
n=1

n

(n+ 1)!

This series converges by the ratio test. Alternatively, we can both show the series converges
and find its sum by considering its sequence of partial sums. Let sn be the nth partial sum of

the series. We can show by induction that sn = (n+1)!−1
(n+1)!

= 1− 1
(n+1)!

. Then as n→∞, sn → 1.

Thus the sum of the series is 1.

Problem 10. Consider the function f : R→ R defined by

f(x) =

{
x2 − 2, if x ∈ Q,
2− 3x, if x /∈ Q.

Determine the points of continuity of f . Choose one such point and give a careful proof of the
continuity of f at that point using the ε − δ definition. Completely justify the fact that f is
discontinuous at all other points.

The function f is continuous only at x = 1 and x = −4. We will show continuity at x = 1.
The proof for x = −4 is similar. Let ε > 0 and choose δ = min{1, ε/3}. Then for all x such that
|x − 1| < δ, we have 0 < x < 2, so 1 < x + 1 < 3. Further, |f(x) − f(1)| = |f(x) + 1|. We have
two cases. If x ∈ Q, then |f(x) + 1| = |x2 − 1| = |x + 1||x − 1| < 3δ ≤ ε. If x /∈ Q, then we
have |f(x) + 1| = |3 − 3x| = 3|x − 1| < 3δ ≤ ε. Hence f is continuous at x = 1. To see that f is
discontinuous at every other point, note that if c 6= 1,−4, then c2− 2 6= 2− 3c. Since every interval
of real numbers contains both rational and irrational numbers, then every δ-interval about c must
contain points at a distance at least |c2 − 2− (2− 3c)| from each other.


