Solutions for the Qualifying Exam - Spring 2017

1. (a) By geometry,

$$
\frac{d / 2}{h}=\frac{\sqrt{5^{2}-3^{2}}}{5} \Rightarrow h=0.375(\mathrm{~m}) .
$$

(b) Set the l-axis along the ramp with the origin at the left end on the floor and the s-axis horizontal with the origin at the foot of the ramp on the floor. Suppose the left end of the rope located above the ramp is $L \mathrm{~m}$ in terms of the l coordinate and the right end on the shoulder of the donkey is $S \mathrm{~m}$ in terms of the s coordinate. Then

$$
5-L+\frac{3}{5} h+\sqrt{S^{2}+(h+3-1)^{2}}=10 .
$$

Differentiating with respect to time t on both sides yields

$$
-\frac{d L}{d t}+\frac{S \frac{d S}{d t}}{\sqrt{S^{2}+(h+2)^{2}}}=0 .
$$

When $S=5.0 \mathrm{~m}$ and $\frac{d S}{d t}=1.0 \mathrm{~m} / \mathrm{s}, \frac{d L}{d t}=0.9033 \mathrm{~m} / \mathrm{s}$. Hence the angular velocity of the wheels is

$$
\frac{d L / d t}{d / 2}=3.0109 \mathrm{rad} / \mathrm{s}
$$

2. (a) Let $f(x)$ be a continuous, decreasing function such that $a_{n}=f(n)$ for $n=1,2, \ldots$ By the integral test: s converges $\Leftrightarrow \int_{1}^{\infty} f(x) d x<\infty \Leftrightarrow \ln 2 \int_{0}^{\infty} 2^{u} f\left(2^{u}\right) d u<\infty \Leftrightarrow t$ converges. In the next to last step, we used the substitution $x=2^{u}$.
(b) i. Choose $b_{n}= \begin{cases}0 & \text { if } n=2^{k} \text { for some } k \in \mathbb{N} \\ 1 & \text { otherwise }\end{cases}$
ii. Choose $c_{n}= \begin{cases}1 / n & \text { if } n=2^{k} \text { for some } k \in \mathbb{N} \\ 0 & \text { otherwise }\end{cases}$
3. (a) The radius of convergence of $g(x)$ is ρ^{2} because

$$
\limsup _{n \rightarrow \infty} \sqrt[n]{a_{n}^{2}}=\left(\limsup _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}\right)^{2}=\frac{1}{\rho^{2}}
$$

(b) No. $f(1)=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$ converges but $g(1)=\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.
(c) No. $f(1)=\sum_{n=1}^{\infty} \frac{1}{n}$ diverges but $g(1)=\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges.
(d) The radius of convergence of $p(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n!}$ is ∞ because for any x,

$$
\limsup _{n \rightarrow \infty} \frac{\left|x^{n+1}\right| /(n+1)!}{\left|x^{n}\right| / n!}=\limsup _{n \rightarrow \infty} \frac{|x|}{n+1}=0 .
$$

(This step is unnecessary if $\lim _{n \rightarrow \infty} \frac{1}{\sqrt[n]{n!}}=0$ can be used directly.)
The radius of convergence of $h(x)$ is ∞ since

$$
0 \leq \limsup _{n \rightarrow \infty} \frac{\sqrt[n]{\left|a_{n}\right|}}{\sqrt[n]{n!}} \leq \lim _{n \rightarrow \infty} \frac{1}{\rho \sqrt[n]{n!}}=0
$$

4. (a) Let $\vec{v}=2 \cdot\langle 1 / 2, \sqrt{3} / 2\rangle$. Then the rate of change of altitude is $\frac{\partial h}{\partial \vec{v}}=\frac{\partial h}{\partial x}+\frac{\partial h}{\partial y} \sqrt{3} \approx-1.366$ meters/sec.
(b) The equation of the hill is given by the implicit equation $f(x, y, z)=z+x^{2} / 200+y^{2} / 200=$ 200, so a vector perpendicular to it is the gradient $\nabla f=(x / 100, y / 100,1)^{T}$. Normalizing yields $\vec{n}=\frac{1}{\sqrt{x^{2}+y^{2}+10,000}}(x, y, 100)^{T}$. At $x=y=50$, we have $\vec{n} \approx(0.408,0.408,0.816)^{T}$.
(c) The condition is $\vec{n} \cdot(0,0,1)^{T}=\cos (\pi / 3)=1 / 2$. This is equivalent to $h(x, y)=50$, so the trees have this angle at height 50 meters, or equivalently on a circle of radius 173 meters from the top of the hill.
5. (a) The area of the h-level slice of the tube is

$$
S(h)=\pi\left(r_{1}^{2}(h)-r_{2}^{2}(h)\right)
$$

where

$$
\begin{aligned}
& r_{1}(h)=R+\sqrt{r^{2}-(r-h)^{2}} \\
& r_{2}(h)=R-\sqrt{r^{2}-(r-h)^{2}}
\end{aligned}
$$

Simplify to get

$$
S(h)=4 \pi R \sqrt{r^{2}-(r-h)^{2}}=4 \pi R \sqrt{h(2 r-h)}
$$

Therefore the volume of submerged water tube is

$$
V(h)=\int_{0}^{h} S(x) d x=4 \pi R \int_{0}^{h} \sqrt{x(2 r-x)} d x
$$

(b) The equation of the tangent through $\left(r, \pi^{2} R r^{2}\right)$ is

$$
V=\pi^{2} R r^{2}+V^{\prime}(r)(h-r)=\pi^{2} R r^{2}+4 \pi R r(h-r)
$$

(c) Solve the following equation for h

$$
250 / 0.001=\pi^{2} \cdot 75 \cdot 20^{2}+4 \pi \cdot 75 \cdot 20(h-20) \Rightarrow h=17.5549(\mathrm{~cm}) .
$$

6. Based on the given conditions, $I(t)$ satisfies the ODE

$$
\frac{d I}{d t}=k I(1-I)
$$

where k is the proportionality constant to be determined. The following extra conditions are also given
(a) When $I=0.1, \quad \frac{d I}{d t}=\frac{900}{100,000}=9 \times 10^{-3}$.
(b) The initial condition $I(0)=\frac{200}{100,000}=2 \times 10^{-3}$.

The first condition implies

$$
9 \times 10^{-3}=k \cdot 0.1 \cdot 0.9 \quad \Rightarrow \quad k=0.1
$$

Using separation of variables, the general solution to the ODE can be determined as

$$
I(t)=\frac{c e^{k t}}{c e^{k t}+1}=\frac{c e^{0.1 t}}{c e^{0.1 t}+1}
$$

where c is an arbitrary constant.
Due to the initial condition,

$$
I(0)=\frac{c}{c+1}=2 \times 10^{-3} \Rightarrow c=\frac{1}{499} .
$$

Solving

$$
I(t)=\frac{e^{0.1 t}}{e^{0.1 t}+499}=0.9 \quad \Rightarrow \quad e^{0.1 t}=499 \cdot 9 \quad \Rightarrow \quad t=10 \ln (499 \cdot 9)=84.1
$$

7. (a)

(b) Using Lagrangian multipliers: $\nabla f=\lambda \nabla g \Leftrightarrow-2 x=2 \lambda(x-y), 1=-2 \lambda(x-y)$ and also $x-y=-4$ (from sketch). This yields $(x, y)=(0.5,4.5)$ as the location for the maximizer.
8. The region of integration is $\{(x, y, z): 0 \leq x \leq y \leq z \leq 1\}$. Reversing the order of integration gives $\int_{0}^{1} \int_{x}^{1} \int_{y}^{1} \exp \left(z^{3}\right) d z d y d x=\int_{0}^{1} \int_{0}^{z} \int_{0}^{y} \exp \left(z^{3}\right) d x d y d z=\int_{0}^{1} 0.5 z^{2} \exp \left(z^{3}\right) d z=(e-1) / 6$.
9. (a) Since $\operatorname{dim}(\operatorname{Col} A)=1, \operatorname{dim}(\operatorname{Nul} A)=n-1$.
(b) A is diagonalizable.

Since $\operatorname{dim}(\operatorname{Nul} A)=n-1, A$ has $n-1$ zero eigenvalues with any associated eigenvector $\left[\begin{array}{llll}v_{1} & v_{2} & \cdots & v_{n}\end{array}\right]^{T}$ satisfying

$$
v_{1}+v_{2}+\cdots+v_{n}=0
$$

Let $e_{i j}$ be the n-dimensional vector with the i th component being 1 , the j th component being -1 and all other components being 0 . Then $\left\{e_{k, k+1}\right\}, k=1,2, \cdots, n-1$, form a basis of the eigenspace of the zero eigenvalue. The only non-trivial eigenvalue must be the trace of A, which is $\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$ with the associated eigenvector $V=\left[\begin{array}{llll}1 & 2 & \cdots & n\end{array}\right]^{T}$. Let $S=\left[\begin{array}{lllll}e_{12} & e_{23} & \cdots & e_{n, n+1} & V\end{array}\right]$ and D be the diagonal matrix with the only non-zero entry located on the nth row and column being $\frac{n(n+1)}{2}$. Then $A=S D S^{-1}$.
(c) Since the characteristic polynomial

$$
\begin{aligned}
& \quad P_{A}(\lambda)=\operatorname{det}(A-\lambda \mathbf{I})=(-\lambda)^{n-1}\left(\frac{n(n+1)}{2}-\lambda\right) \\
& \operatorname{det}(A+\mathbf{I})=P_{A}(-1)=\frac{n(n+1)}{2}+1
\end{aligned}
$$

10. (a) The velocity vector (\dot{x}, \dot{y}) is proportional to the gradient $\nabla c(x, y)$. Therefore $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{\partial_{y} c}{\partial_{x} c}=\frac{2 y}{x}$.
(b) Solving the differential equation from part (a) gives $d y / 2 y=d x / x$, so $y=K x^{2}$ with $K=$ const. Using the initial condition $y(100)=100$ gives $K=0.01$, so the answer is $y=f(x)=0.01 x^{2}($ with $x \geq 0)$.
