FALL 2017 GRADUATE QUALIFYING EXAM: ANSWERS AND HINTS

NOTE: For full credit, students are expected to provide COMPLETE solutions with all details.

1. The minimum length is $\left(2^{2 / 3}+3^{2 / 3}\right)^{3 / 2}$. (Hint: The angle θ is marked in the figure, so use it! Find the length of the segment as a function of θ.)
2. (a) The curve $r=1 / \theta$ approaches the x-axis as $\theta \rightarrow 0$; it meets the circle $r=1$ at a positive angle less than $\pi / 2$ and the circle $r=2$ at a smaller positive angle. (b) For (i), it is necessary to express the area as a sum of two iterated integrals, while for (ii) only one iterated integral is needed. (c) The area is 1 , best computed using part (ii) of (b).
3. (a) $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$. (b) Eigenvalues are $(1 \pm \sqrt{5}) / 2$ and eigenvectors $\left[\begin{array}{c}(1 \pm \sqrt{5}) / 2 \\ 1\end{array}\right]$. (c) An answer is

$$
x_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}-\left(\frac{1-\sqrt{5}}{2}\right)^{n+1}\right)
$$

(Hint: Let $y_{n}=\left[\begin{array}{c}x_{n} \\ x_{n-1}\end{array}\right]$, so $y_{n}=A y_{n-1}, n=2,3, \ldots$. Find c_{1} and c_{2} so that $y_{1}=c_{1} v_{1}+c_{2} v_{2}$, where v_{1} and v_{2} are the eigenvectors of A, and note that $y_{n}=c_{1} \lambda_{1}^{n-1} v_{1}+c_{2} \lambda_{2}^{n-1} v_{2}$, where λ_{1} and λ_{2} are the corresponding eigenvalues. Alternatively, one can diagonalize A and write $A=P D P^{-1}$, so that $A^{n}=P D^{n} P^{-1}$, and find an equivalent answer that way.)
4. (b) $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1\end{array}\right]$. (c) A basis is $\left\{-x+x^{2},-x+x^{3}\right\}$. (Note that the basis vectors must be polynomials, not elements of \mathbb{R}^{4}.) (d) \mathbb{R}^{2}.
5. (a) The angle is

$$
\arccos \left(1 / \sqrt{\left(\frac{\partial h}{\partial x}\right)^{2}+\left(\frac{\partial h}{\partial y}\right)^{2}+1}\right)=\arctan \sqrt{\left(\frac{\partial h}{\partial x}\right)^{2}+\left(\frac{\partial h}{\partial y}\right)^{2}}
$$

(Hint: The angle between the two planes equals the angle between vectors normal to the planes.) (b) Points on the circle $(x-2)^{2}+y^{2}=1 / 4$ with center $(2,0)$ and radius $1 / 2$.
6. (a) The vertices are $(0,5,-2),(0,-1,-2),(6,-1,-2)$, and $(0,-1,4)$. (b) The required integral is

$$
\frac{1}{36} \int_{0}^{6} \int_{-1}^{5-x} \int_{-2}^{3-x-y} z d z d y d x
$$

(Hint: P is a tetrahedron, so its volume is $1 / 3$ times its base area times its height.)
7. (a) Let q_{i} be the number of bicycles made in the facility with cost $c_{i}, i=1,2,3$. Then $q_{1}=547$, $q_{2}=1093$, and $q_{3}=365$. (Hint: Find the total cost as a function of the variables q_{1}, q_{2}, and q_{3}, and use Lagrange multipliers.) (b) Approximately \$2191, the corresponding value of the Lagrange multiplier λ.
8. (a) $g(x)=\int_{0}^{x} \frac{x+u}{1+u^{2}} d u$. (Hint: Express the sum in $g(x)$ as a Riemann sum of a function $f(u)$ over the interval $0 \leq u \leq x$ with points $u_{i}=i x / n, i=1, \ldots, n$, in its subdivision.)
$\frac{d g}{d x}=\frac{2 x}{1+x^{2}}+\arctan x$.
9. (a) 13. (Hint: Split up the sum into two geometric series, explaining why this is valid.) (b) $1 / 2$. (Hint: Telescoping series.) (c) $\ln (3 / 2)$. (Hint: Integrate the geometric series

$$
\left.1+x+x^{2}+\cdots=\frac{1}{1-x}, \quad|x|<1 .\right)
$$

10. (a) Let t denote time and let s denote the amount of silt in the reservoir. Then $\frac{d s}{d t}=200-\frac{s}{2 \cdot 10^{8}}$.
(b) $s=4 \cdot 10^{10}\left(1-e^{-t /\left(2 \cdot 10^{8}\right)}\right)$. (c) $s \rightarrow 4 \cdot 10^{10}>4 \cdot 10^{9}$, so the reservoir fills up with silt. (d) $t=2 \cdot 10^{8} \ln (10 / 9)$.
