
Qualifying Exam
Spring 2019
April 1, 2019 Number

You may use calculators for this exam. — Justify all your answers. Answer specific questions

by giving the exact values, not approximations.

Problem 1. Consider the unit sphere. Determine
the radius of a circular cylinder whose axis is along
the sphere’s diameter and which contains one-half of
the sphere’s volume. See Figure 1.

Problem 2. Find all the solutions of the equation

y′(x) = |y(x)|, x ∈ R

which are defined for all x ∈ R.

Fig. 1: The unit sphere cut by a cylinder

Problem 3. Figure 2 shows the parabola y = x2 and a unit circle with its center on the y-axes. This unit
circle intersects the parabola at the right angle. That means that at each point of intersection the tangent
lines to the parabola and the unit circle are perpendicular. Find the center of this unit circle.

Problem 4. Let P be a fixed point on the unit circle T. Denote by ae the average of the Euclidian distances
of all the points on T to the point P . (Two Euclidean distances are indicated as blue line segments in
Figure 3.) Denote by al the average of all shortest arc lengths from all the points on T to P . (Two shortest
arc lengths are shown as teal circular arcs in Figure 3.)

(a) Use common sense about the averages to order the numbers 0, 1, 2, ae, al and π in the increasing
order. Explain your reasoning in as simple terms as possible without doing any calculus.

(b) Calculate al exactly using integrals.

(c) Calculate ae exactly using integrals.
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Fig. 2: y = x2 and a unit circle
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Fig. 3: The unit circle and averages
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Problem 5. (a) Find the Maclaurin series for (sinx)2 using the Maclaurin series for cos(2x).

(b) Using the answer for part (a), find lim
x→0

(sinx)2 − x2

x4
.

Problem 6. Let t ∈ R and consider the functions ft : R → R given by

ft(x) = x+ te−x2

for all x ∈ R.

(a) Prove that for each t ∈ R the function ft is a surjection.

(b) Prove that the function ft is a bijection if and only if |t| ≤
√

e/2.

Problem 7. Let A be a real 3×2 matrix and let B be a real 2×3 matrix. Prove the following implication:

AB =





2 −2 1
2 −3 2
2 −4 3



 ⇒ BA = I2

Hint: AB is singular,
[

1 1 1
]⊤

is an eigenvector of AB and AB has an eigenvalue of multiplicity 2.

Problem 8. Given

A =





0 1 1 −1
1 2 2 −3
2 3 3 −5



 and y =









1
2
3
4









,

find a vector v ∈ NulA and a vector w ∈ RowA such that y = v +w.
Hint that you need not use: Such vectors v and w are uniquely determined.

Problem 9. A classical calculus problem is as follows: Consider a piece of wire of length 4 and cut it in
two pieces. Make one piece into a square and the other piece into a circle. Find the minimum and the
maximum of the total area that is enclosed by such formed square and circle.
In this problem we ask you to solve the analogous problem for a cube and a sphere: Assume that the total
surface area of a cube and a sphere is 4. Calculate the minimum and the maximum of the total volume
enclosed by such a cube and a sphere.

Problem 10. Let f : N → N be a function where N denotes the set of positive integers.

(a) Prove that
+∞
∑

n=1

f(n)

n2
diverges whenever f is strictly increasing.

(b) Prove that there exists nondecreasing unbounded f such that

+∞
∑

n=1

f(n)

n2
converges.
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Solution of Problem 1. Let s ∈ (0, 1). The volume of the part of the unit sphere which is inside the right
circular cylinder of radius s is

4π

∫ s

0
r
√

1− r2dr =
4

3
π
(

1−
(

1− s2
)3/2

)

.

Since the volume of the unit sphere is 4π/3, one-half of the unit sphere will be inside the cyinder with the

radius s =
√

1− 2−2/3.

Solution of Problem 2. We first look for the nonnegative solutions y(x) ≥ 0. With this condition the given
equation simplifies to y′(x) = y(x). The general solution of this equation is y(x) = C exp(x) with C ∈ R.
Since we imposed the condition y(x) ≥ 0, the solutions of the given equation are y(x) = C exp(x) with
C ≥ 0. Notice that all these solutions are defined on R. Next, we look for the negative solutions of the
given equation y(x) < 0. For such solutions the given equation simplifies to y′(x) = −y(x). The general
solution of the last equation is y(x) = C exp(−x) with C ∈ R. However, since we imposed the condition
y(x) < 0, the solutions of the given equation are y(x) = C exp(−x) with C < 0. Notice that all these
solutions are defined on R. In conclusion, the general solution of the given equation is the following family
of functions

y(x) = Cex, y(x) = 0, y(x) = −Ce−x,

where x ∈ R and C > 0.

Solution of Problem 3. Let the coordinates of the intersection point of the parabola and the unit circle be
(a, a2). At any point of a circle, its radius and the tangent at that point are perpendicular. Therefore the
tangent line to the parabola at the point (a, a2) goes through the center of the circle. Since the tangent
line is

y = 2a(x− a) + a2 = 2ax− a2

and the center of the circle is on the y-axis, the circle center is (0,−a2). Since the radius of the circle is
1 we have that the distance of the points (0,−a2) and (a, a2) is 1. Solving a2 + 4a4 = 1 for a > 0 yields

a = 1
2

√

1
2

(√
17− 1

)

. Consequently, the center of the pictured unit circle is
(

0, (1 −
√
17)/8

)

.

Solution of Problem 4. (a) For a fixed point on the unit circle its Euclidean distance to P is shorter than
the length of the shorter arc from that point to P . Therefore ae < al. By placing the two points which are
at the Euclidean distance 1 from P on the unit circle we see that the arc of points on T which are further
than 1 away from P is longer than the arc of points on T which are less than 1 from from P . Therefore,
1 < ae. Similar reasoning leads to al < 2. Hence

0 < 1 < ae < al < 2 < π.

(b) This is the same as calculating the average distance of a point in the closed interval (−π, π] to the
origin, that is the piont 0. Thus

al =
1

2π

∫ π

−π
|x|dx =

π

2
.

(c) Let P = (1, 0). Let Q = (cos(x), sin(x)) with x ∈ (−π, π]. Then the Euclidean distance of Q to P is

√

(sinx)2 + (1− cos x)2 = 2
∣

∣sin(x/2)
∣

∣.

Thus

ae =
1

2π

∫ π

−π
2
∣

∣sin(x/2)
∣

∣dx =
2

π

∫ π

0
sin(x/2)dx =

4

π
.
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Solution of Problem 5. (a) We have that (sinx)2 =
(

1− cos(2x)
)

/2 and the Maclaurin series for cos(2x) is

cos(2x) =
+∞
∑

k=0

(−4)k

(2k)!
x2k = 1− 2x2 +

2

3
x4 − 4

45
x6 + · · · .

Hence

(sinx)2 =

+∞
∑

k=1

2
(−4)k−1

(2k)!
x2k = x2 − 1

3
x4 +

2

45
x6 − 1

315
x8 + · · · .

(b) It follows from (a) that

(sinx)2 − x2 =

+∞
∑

k=2

2
(−4)k−1

(2k)!
x2k = x4

+∞
∑

k=2

2
(−4)k−1

(2k)!
x2(k−2) = x4

(

−1

3
+

2

45
x2 − 1

315
x4 + · · ·

)

.

This implies that (sinx)2−x2 = x4g(x), where g(x) is a continuous function defined on R with g(0) = −1/3.
Consequently, the limit in (b) equals −1/3.

Solution of Problem 6. (a) The claim is clear if t = 0. In the rest of this proof we assume that t 6= 0.
Clearly,

−|t| ≤ te−x2 ≤ |t| for all (t, x) ∈ R× R.

Therefore
x− |t| ≤ ft(x) ≤ x+ |t| for all (t, x) ∈ R× R. (1)

Let t ∈ R\{0} and y ∈ R be arbitrary. Set x1 = y − |t| and x2 = y + |t|. Then, x1 < y < x2. By (1) we
have

ft(x1) ≤ x1 + |t| = y = x2 − |t| ≤ ft(x2). (2)

Since the function ft is clearly continuous on R and thus on [x1, x2], by the Intermediate Value Theorem
there exists x ∈ [x1, x2] such that ft(x) = y.
(b) We have

f ′
t(x) =

d

dx
ft(x) = 1− 2txe−x2

for all (t, x) ∈ R×R. (3)

The minimum of the derivative f ′
t(x) occurs at x = sgn(t)

√
2/2 and that minimum is 1− |t|

√

2/e. Hence,
if |t| ≤

√

e/2, then the function ft is strictly increasing; thus injective. For the converse, we prove its
contrapositive. Assume that |t| >

√

e/2. Then the value of f ′
t(x) at x = sgn(t)

√
2/2 is negative. Since the

limit of f ′
t(x) as x → ∞ is 1 and since f ′

t is a continuous function we conclude that there exists x0 ∈ R

such that f ′
t(x0) = 0 and f ′

t(x) changes sign at x0. This implies that ft(x) has a local extremum at x0.
Since ft is continuous on R it cannot be an injection.

Solution of Problem 7. We are given that the matrix AB is singular. Hence 0 is an eigenvalue. The RREF
of AB is





1 0 −1/2
0 1 −1
0 0 0



 .

Consequently the multiplicity of 0 as an eigenvalue of AB is 1. Since AB[1 1 1]⊤ = [1 1 1]⊤, 1 is the second
eigenvalue of AB. The RREF of AB − I3 is





1 −2 1
0 0 0
0 0 0



 .

Thus, the multiplicity of the eigenvalue 1 is 2 and
OVER
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AB





1
1
1



 =





1
1
1



 , AB





1
0

−1



 =





1
0

−1



 .

The last two vector equalities imply that both vetors [1 1 1]⊤ and [1 0 − 1]⊤ belong to ColA. Since these
two vectors are linearly independent and dimColA ≤ 2 we conclude that ColA is spanned by [1 1 1]⊤

and [1 0 − 1]⊤. Since AB acts as an identity on [1 1 1]⊤ and [1 0 − 1]⊤, it acts as an identity on
ColA. Consequently, ABA = A. Since the columns of A are linearly independent the last equality yields
BA = I2.

Solution of Problem 8. Since this problem asks about RowA and NulA, it is useful to find the basis of
both of these spaces. For this aim RREF of A is useful:





1 0 0 −1
0 1 1 −1
0 0 0 0



 .

Thus the vectors [1 0 0 − 1]⊤ and [0 1 1 − 1]⊤ form a basis for RowA, while the vectors [0 1 − 1 0]⊤ and
[1 1 0 1]⊤ form a basis for NulA. Solving the vector equation

x1









1
0
0

−1









+ x2









0
1
1

−1









+ x3









0
1

−1
0









+ x4









1
1
0
1









=









1
2
3
4









for x1, x2, x3, x4 will lead to v and w. So, row reduce









1 0 0 1 1
0 1 1 1 2
0 1 −1 0 3

−1 −1 0 1 4









to









1 0 0 0 −2
0 1 0 0 1
0 0 1 0 −2
0 0 0 1 3









to get








1
2
3
4









= (−2)









1
0
0

−1









+









0
1
1

−1









+ (−2)









0
1

−1
0









+ 3









1
1
0
1









=









−2
1
1
1









+









3
1
2
3









= w + v.

Solution of Problem 9. Denote by x the side of a cube and by y the radius of a sphere. Then the constraint
in this problem is

6x2 + 4πy2 = 4, x ≥ 0, y ≥ 0.

Under this constraint we need to find the minimum and the maximum of the function

f(x, y) = x3 +
4

3
πy3.

We use the method of Lagrange multipliers and, for positive x and y, we set the system of equations:

3x2 = λ(12x)

4πy2 = λ(8πy)

6x2 + 4πy2 = 4

OVER
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This system symplifies to

x = 4λ

y = 2λ

3x2 + 2πy2 = 2

Substituting the first two equations into the third one leads to the solution

λ =
1

2
√
6 + π

, x =
2√
6 + π

, y =
1√
6 + π

We also need to consider the points (x, y) at the boundary of the constraint. That is

x = 0, y =
1√
π

and x =

√

2

3
, y = 0.

The corresponding values of the function f , respectively, are

4

3
√
6 + π

≈ 0.440989,
4

3
√
π
≈ 0.752253,

(

2

3

)
3
2

≈ 0.544331.

Hence, the maximum volume occurs when there is no cube. The minimum volume occurs when the side
of the cube is equal to the diameter of the sphere, both being 2/

√
6 + π

Solution of Problem 10. (a) Assume that f : N → N is strictly increasing. Since f(1) ∈ N we have f(1) ≥ 1.
Since f is strictly increasing we have f(2) > f(1). By the transitivity property of order f(2) > f(1) and
f(1) ≥ 1 imply f(2) > 1. Since f(2) ∈ N we have f(2) ≥ 2. Since f is strictly increasing f(3) > f(2). This
strict inequality and f(2) ≥ 2 yield f(3) > 2 and consequently f(3) ≥ 3 as f(3) ∈ N. Let n ∈ N be such
that n > 3. Repeating the preceding reasoning n− 3 more times, we conclude that f(n) ≥ n. Thus for all
n ∈ N we have f(n) ≥ n. Therefore

f(n)

n2
≥ 1

n
for all n ∈ N.

Since the harmonic series diverges, by the comparison test the series in (a) also diverges.
(b) For arbitrary n ∈ N set

f(n) = k whenever 2k−1 ≤ n < 2k with k ∈ N.

Or, equivalently,
f(n) =

⌊

log2(n)
⌋

+ 1 for all n ∈ N. (4)

Then, for an arbitrary k ∈ N we have

2k−1
∑

n=2k−1

f(n)

n2
= k

2k−1
∑

n=2k−1

1

n2
≤ k2k−1 1

22(k−1)
=

k

2k−1
.

By the Ratio test the series
∑+∞

k=1
k

2k−1 converges. In fact
∑+∞

k=1
k

2k−1 = 4. Therefore, for an arbitrary p ∈ N

we have
p

∑

n=1

f(n)

n2
≤

2⌊log2 p⌋−1
∑

n=1

f(n)

n2
≤

⌊log2 p⌋
∑

k=1

k

2k−1
≤ 4.

The last inequality proves that the sequence of the partial sums of the series
∑+∞

n=1 f(n)/n
2 with f defined

in (4) is bounded above. Since this series has positive terms it follows that this series converges. As f
defined in (4) is nondecreasing and unbounded this proves (b).


